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1 Likelihood

We did not write out the full log likelihood in Equation (21) in the main text.
We do this here, but for simplicity, we simplify the background to be denoted by
m0µ(t, s) and the trigger by θMf(t, s). Altogether, our model in Equation (5)
of the main text with parameter vector Θ = {m0, θ0, θ1} has the following log
likelihood:

`(Θ) =
∑
i

log λ(ti, si)−
∫ T

0

∫
X

λ(t, s)dtds (1)

=
∑
i

log

m0µ(ti, si) +
∑

j:tj<ti

θMj
f(ti − tj , si − sj)


−
∫ T

0

∫
X

m0µ(t, s) +
∑

j:tj<t

θMjf(t− tj , s− sj)

 dtds

=
∑
i

log (m0µ(ti, si)) +
∑
i

log

 ∑
j:tj<ti

I(Mj = 0)θ0f(ti − tj , si − sj)


+
∑
i

log

 ∑
j:tj<ti

I(Mj = 1)θ1f(ti − tj , si − sj)

− ∫ T

0

∫
X

m0µ(t, s)dtds

−
∫ T

0

∫
X

∑
j:tj<t

I(Mj = 0)θ0f(t− tj , s− sj)dtds

−
∫ T

0

∫
X

∑
j:tj<t

I(Mj = 1)θ1f(t− tj , s− sj)dtds.
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We can now take the derivative of Equation (1) with respect to m0, using the
chain rule:

∂`(Θ)/∂m0 = 0

=
∑
i

µtrend(ti)µweekly(ti)µdaily(ti)µarea(si)

λ(ti, si)

−
∫ T

0

∫
X

µtrend(t)µweekly(t)µdaily(t)µarea(s)dtds. (2)

Again, using the chain rule we can now take the derivative of Equation (1)
with respect to θ0 (the derivative with respect to θ1 is analogous) and obtain:

∂`(Θ)/∂θ0 = 0

=
∑
i

∑
j:tj<ti

I(Mj = 0)g(ti − tj)h(si − sj)
λ(ti, si)

−
∫ T

0

∫
X

∑
j:tj<t

I(Mj = 0)g(t− tj)h(s− sj)dsdt. (3)

2 Inference algorithm

We can write out the inference procedure for the model explained in the main
text in Section 4.3 in algorithmic form. The procedure consists of two main
steps: The initialisation and the inference loop.

In the initialisation stage, we obtain initial values for the daily, weekly, trend,
area and triggering components. We then use those to calculate the entire
background component µ(t, s). We need to do this calculation twice: Once to
obtain µ(ti, si), that is the background value at all events i and once more to
obtain

∫
µ(t, s)dtds, that is the background integrated over the entire study

area. We then repeat this step to obtain the trigger at all events i f(ti, si) and
integrated over the study area

∫
f(t, s)dtds.

With those quantities in hand, we then update m0 and θM from some initial
guesses and then calculate the intensity λ, again at all events i and integrated
over the study area.

We then enter the inference loop where essentially the procedure repeats:
We obtain updated values for the daily, weekly, trend, area and triggering com-
ponents; we calculate the background and triggering components at the events
and integrated over the study area. We update m0 and θM , and calculate λ at
all events i and integrated over the study area. When m0 and θ converge, we
break the inference loop.

More formally, we write:
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Algorithm 1 Inference algorithm

Input: np, bdaily, bweekly, btrend, barea, bg, bh, m0 and θM
Initialisation
Initialise components µdaily, µweekly, µtrend, µarea, g(t), h(s),

Calculate background µ(si, ti) and
∫ T

0

∫
X
µ(s, t)dtds

Calculate trigger g(t− ti)h(s− si) and
∑

i

∫ T

ti

∫
X
g(t− ti)h(s− si)dtds

Update m0 and θM
Calculate intensity λ(ti, si) and

∫ T

0

∫
X
λ(t, s)dtd

while not convergence do
Update components µdaily, µweekly, µtrend, µarea, g(t), h(s)

Calculate background µ(si, ti) and
∫ T

0

∫
X
µ(s, t)dtds

Calculate trigger g(t− ti)h(s− si) and
∑

i

∫ T

ti

∫
X

(t− ti)h(s− si)dtds
Update m0 and θM
Calculate intensity λ(ti, si) and

∫ T

0

∫
X
λ(t, s)

Check convergence of m0 and θM

3 Initialization of triggering functions

Although our estimation of g(·) and h(·) is non-parametric and solely driven
by the data, we consider different initializations of the estimates to assess the
sensitivity of the inference. Firstly, we consider a monotonically decreasing
function with peak at zero for both g(·), h(·):

g(ti − tj) =
1

(ti − tj)/24 + 1/24
, ti > tj

h(si − sj) =
1

1 + (si − sj)>(si − sj)
.

Secondly, we consider forms which introduce a delayed peak for g(·). This
is motivated by the delayed criminal reaction model, where the intensity of the
triggering is set to peak after some delay instead of reaching the peak at zero
and decaying monotonically afterwards (Gilmour, 2019). There are criminolog-
ical theories that do explain such delays in homicide and burglary near-repeat
occurrences. In the context of domestic abuse, we expect that the spillover effect
is delayed by the time it takes to process the event and the time for information
to propagate. Following Gilmour (2019), we consider the following form:

g(ti − tj) = ω2(ti − tj) exp(−ω(ti − tj)), ti > tj ,

where ω = 1/15 is the delay parameter which makes the function g(·) peak at
approximately ti − tj = 15 days.
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4 Model Selection Output

Table 1 shows the grid search for optimal model parameters. For each combi-
nation of parameters we compute the prediction error (loss) according to (26)
in Section 5.1 of the main text.

5 Voronoi residuals

5.1 Approximating Voronoi Residuals

To compute the resisudal for cell c, Rc, we uniformly sample S locations,
{s(i)}Si=1 in the cell c and compute

Rc ≈ |Ac|
1

S

S∑
i=1

λ(s(i)), (4)

where |Ac| is the area of cell c and

λ(s) =

∫ T

0

λ(t, s|Ht)dt (5)

=

∫ T

0

{
µ(t, s) +

∑
j:tj<t

g(t− tj)h(s− sj)
}

dt (6)

=

∫ T

0

µ(s)µ(t)dt+

∫ T

0

∑
j:tj<t

g(t− tj)h(s− sj)dt (7)

= µ(s)

∫ T

0

µ(t)dt+

∫ T

0

∑
j:tj<t

g(t− tj)h(s− sj)dt, (8)

in which the integration is approximated using equally-spaced evaluation points,
{ti}NT

i=1, with interval size T
NT

:

λ(s) ≈ µ(s)
T

NT

NT∑
i=1

µ(ti) +
T

NT

NT∑
i=1

∑
j:tj<ti

g(ti − tj)h(s− sj). (9)

5.2 Analysis of Voronoi Residuals

As discussed in Section 5.3.2 in the main text, the residuals should follow a
gamma distribution: Rc ∼ 1 − Γ(3.569, 3.569). Figure 1 shows the histogram
(normalised to sum to 1) of the residuals and the density function of the the-
oretical probability distribution. Evidently, the histogram does not match the
expected distribution. The large spike at the value of one means that our model
predicts 0 events, when in fact there was an event. Upon further investigation,
our model predicts zero events for very small Voronoi tessellation polygons. The
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Table 1: Caption

bdaily bweekly btrend loss

0.021 0.17 5.0 184.532889
0.021 0.17 10.0 184.366152
0.021 0.17 15.0 184.299209
0.021 0.17 20.0 184.263409
0.021 0.33 5.0 184.493149
0.021 0.33 10.0 184.328862
0.021 0.33 15.0 184.276286
0.021 0.33 20.0 184.249867
0.021 0.5 5.0 184.483746
0.021 0.5 10.0 184.329928
0.021 0.5 15.0 184.270184
0.021 0.5 20.0 184.250233
0.042 0.17 5.0 184.491920
0.042 0.17 10.0 184.347753
0.042 0.17 15.0 184.290113
0.042 0.17 20.0 184.258421
0.042 0.33 5.0 184.450288
0.042 0.33 10.0 184.312629
0.042 0.33 15.0 184.267339
0.042 0.33 20.0 184.242055
0.042 0.5 5.0 184.442933
0.042 0.5 10.0 184.306565
0.042 0.5 15.0 184.263047
0.042 0.5 20.0 184.239526
0.083 0.17 5.0 184.439228
0.083 0.17 10.0 184.316948
0.083 0.17 15.0 184.274103
0.083 0.17 20.0 184.249890
0.083 0.33 5.0 184.406666
0.083 0.33 10.0 184.290781
0.083 0.33 15.0 184.253614
0.083 0.33 20.0 184.240578
0.083 0.5 5.0 184.401316
0.083 0.5 10.0 184.289823
0.083 0.5 15.0 184.251150
0.083 0.5 20.0 184.240045
0.125 0.67 30.0 184.223818
0.12 0.67 40.0 184.230693
0.12 0.67 50.0 184.235441
0.12 1.0 30.0 184.230291
0.12 1.0 40.0 184.230829
0.12 1.0 50.0 184.235758
0.21 0.67 30.0 184.226855
0.21 0.67 40.0 184.224510
0.21 0.67 50.0 184.236617
0.21 1.0 30.0 184.229135
0.21 1.0 40.0 184.230260
0.21 1.0 50.0 184.235262
0.29 0.67 30.0 184.226865
0.29 0.67 40.0 184.228421
0.29 0.67 50.0 184.233843
0.29 1.0 30.0 184.228178
0.29 1.0 40.0 184.229987
0.29 1.0 50.0 184.235493
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Figure 1: Histogram of residuals from the model fit to the domestic abuse data
for the period of 2018, and approximate theoretical density (continuous line).

small polygons are a result of many events occurring within an immediate vicin-
ity of each other. In our dataset, this is caused by the mapping of the spatial
locations of events into pre-defined ‘snap points’ to preserve privacy. To prevent
duplicate points, we added a small random perturbation to the location of each
event as part of the data preparation step. Even with this intervention, the
distributional skew of the residuals persists.

To further confirm this effect, we generated two sets of synthetic data for
a one-year period on a circular domain as shown in Figure 2. The top rows
show a dataset where 540 original events are spread evenly throughout the
space and 210 follow-up events occur in a spatial vicinity (point are separable
visually on the map on the left). The bottom row shows 405 original events
spread uniformly across the space and 245 follow-up events occurring within the
immediate vicinity of the original events, making the points visually inseparable.
The right panels of both rows show Voronoi residuals after the model fit and
their theoretical distributions. It is clear that in the setting where the follow-
up events are near-duplicates of the original events (Figure 2c), we observe a
similar pattern in the Voronoi residuals as for the real domestic abuse data:
an unexpected spike at the value of one. For the more regular dataset, shown
in Figure 2a, the empirical distribution of the residuals closely matches the
theoretical distribution.
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(a) Synthetically generated events over
a one-year period. Out of the total
750 events, 540 are triggered by and lo-
cated in a spatio-temporal vicinity of a
past event.
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(b) Histogram of residuals from the
model fit to the synthetic data shown
in Figure 2a. The plot also shows the
theoretical distribution of the residuals
(red).
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(c) Synthetically generated events over
a one-year period. Out of the total
750 events, 405 are triggered by and
located in a very immediate spatio-
temporal vicinity of a past event. Note
that some points are so close to other
points that they appear as a single
point in this plot.
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(d) Histogram of residuals from the
model fit to the synthetic data shown
in Figure 2c. The plot also shows the
theoretical distribution of the residuals
(red).

Figure 2: Synthetic experiments for a circular domain over a one-year period to
demonstrate the sensitivity of the distribution of Voronoi residuals.
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