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It is well understood that crime is clustered in both space and time. This is recognized
by the emergence of so-called hot-spots, which are often short-lived. There are a num-
ber of theories in criminology that provide an explanation for this, although crime is
a complex phenomenon and matching theories with empirical evidence is an ongoing
task. Whilst standard regression techniques can be used, the assumptions are typi-
cally violated because of spatio-temporal autocorrelation, resulting in poor predictive
performance. Recent work has advocated the use of Gaussian process models for their
flexibility and tractability, although a Gaussian assumption is only an appropriate
approximation in regions of high crime. Instead, a log-Gaussian Cox process (LGCP)
is proposed as a model of criminal activity in space and time. We adopt a Bayesian
approach to provide a full quantification of uncertainty. The resulting posterior distri-
bution is intractable and poses significant computational challenges that we overcome
by the use of Laplace approximation or Markov Chain Monte Carlo methods. In
either case, by assuming a grid structure, we use Kronecker methods to accelerate
the linear algebra procedures involved. We demonstrate the proposed methodology
with London crime data for 2016, using socio-economic covariates derived from census
data.
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1

1 Introduction

The endeavour of understanding crime is not new. Firstly, the institutions that admin-
ister justice have already existed in ancient civilisations. Secondly, the field of crimi-
nology as an academic discipline has long been established. Criminologists recognised
early that a systematic approach to understanding crime is necessary for designing
effective responses to crime, and for implementing policy. The modern criminology
community started systematically developing their hypotheses as early as the 1700s
(Jewkes and Letherby, 2002). The understanding of criminal activity and its sources
has changed over time. The answers to very fundamental questions such as ‘Why
some people commit crime and others do not?’ have been changing as a result of
secular trends and structural shifts in society such as industrial revolution (Jewkes
and Letherby, 2002). The discipline of criminology involves both laying out the the-
oretical underpinnings as well as providing supporting evidence in order to present
a theory that explains some aspect of crime. Empirical evidence involves asking the
right questions and designing appropriate experiments that can answer them. In re-
cent decades, improvement in the availability of data - improved census collection,
digitalisation - have enabled researchers to ask questions which had not been possible
before. By representing theories as mathematical models, the collected data can be
compared with the predictions obtained from the models and thus provide evidence
for, or against, the theory. To build models that are in line with the theory, it is
necessary to review the main ideas in the field of criminology.

1.1 Overview of modern criminology

It is common to split criminological theories into three groups. Firstly, those concerned
with the individual, secondly, the theories which pay particular attention to factors
external to the offending individual, and lastly those that pay close attention to the
role of the state with regards to criminology (Jewkes and Letherby, 2002).

1.1.1 Theories focused on the individual

In the first category which focuses on the individual offenders, classical criminology
which was pioneered by an Italian philosopher Cesare Beccaria and a British philoso-
pher Jeremy Bentham in the second half of the 18th century had a huge impact on
legal and penal systems across Europe and North America (Carpenter, 2010). At
the centre of this are intellectual principles and political ideas of the Enlightenment -
utilitarianism and power of rationality. The theory is built on the presumption that
criminals go through a rational calculative decision making process before committing
a crime. As the fundamental cause of criminal behaviour of the criminals are the com-
peting concepts of free will and hedonism, maximisation of pleasure, and minimisation
of pain, that all people (both offender and non-offenders) need to manage (Jewkes and
Letherby, 2002, ch.2). The theory strongly advocates punishing the crime rather than
punishing individual’s social or physical characteristics, presumption of innocence,
abolition of capital punishment, and condemnation of the use of torture. Despite its
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popularity at the time, this theory was not able to account for children criminality,
rising crime rates in the aftermath of industrial revolution. This limitation led to
alternative theories.

In the late 18th century, Italian physician Cesare Lombroso put forward what has
become known as biological theories. Contrary to the classical theory, the theory
suggests, criminals do not act out of free will but out of the innate urge to commit
crime (Beccalossi, 2010). Lombroso has been largely influenced by Darwinism which
he used to provide supporting evidence for this theory. The key concepts include
degeneration - an arrest in the development of an individual, and atavism - reappear-
ance of ancestral characteristics which have been lost through evolutionary change.
Lombroso’s theories and methodology were criticised for their anecdotal nature, incon-
sistent methodology, and conceptual flaws, and therefore criminologists of the early
20th century focused on sociological theories instead (Beccalossi, 2010).

However, interest in the theories based on biology has re-emerged in the middle of
the 20th century, with focus on examining biological and psychological factors together
with the importance of social context. These methods, known as biosocial theories,
step away from unethical eugenic measures advocated by the early biological theories
and focus on improving the environment (Rocque, Welsh, and Raine, 2012). In the
context of criminology, advances in research in genetics and neuroscience have helped
pinpointing correlations of particular genetic polymorphisms and brain functioning
with increased criminal behaviour. An example of such correlation is cognitive deficit
among offenders. Discovering the causes of the brain deficit is still an active area of re-
search but the current hypotheses with substantial evidence include: substance abuse
during in foetal stages, traumatic experiences in early childhood, child abuse. Other
examples of brain functioning with a strong link to criminal activity are impulsivity,
negative emotionality, aggression. The main point lies in recognising that factors such
as genes or brain functioning interact with the environment. Biosocial criminologists
focus on identifying the former, but intervening in the latter. The intervention mea-
sures suggested by biosocial criminologists focus on developmental prevention. These
include family-centred programs, preschool and school-based programs among others.
For a more extensive treatment, please refer to Rocque, Welsh, and Raine (2012).

1.1.2 Theories focused on the external social factors

The second category of theories focuses on the factors external to the individual
- the neighbourhood, the peer group, and the family. Inspired by the positivism
philosophy of scientifically identifying the facts, these theories aim to explain the
causes of criminal behaviour in order to subsequently design appropriate responses.

One of the most prominent schools of thought in this category is the social dis-
organisation theory proposed in the 1920-30s by the ‘Chicago school’ sociologists.
Social disorganisation theory suggests that offenders are more likely to offend in areas
with poor housing, poor health, socio-economic disadvantage, and high turnover of
the population. This theory proposes that crime is function of neighbourhood dy-
namics, rather than the individuals (Jewkes and Letherby, 2002). In order words,
social disorganisation considers how the social fabric of a community affects offender’s
decisions. The theory is still applicable in contemporary criminology research despite
its age. For example, Johnson and Summers (2015) show that offenders tend to tar-
get areas with low social cohesion in the case of theft from vehicle crimes. In policy
terms, the focus is on understanding how environment contributes to crime, and on
reorganising socially disorganised communities (Jewkes and Letherby, 2002). In the
same work, Johnson and Summers (2015) also provide evidence that offenders tend
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to target areas that are within their awareness spaces - close to their home, place
of work, or on places encountered during regular activities - as well as places which
are easily accessible. The criminology theory which focuses on explaining individual’s
place of offending by considering how their routines activities influence their awareness
of criminal opportunities is referred to as crime pattern theory (CPT).

Strain theory also focuses on factors external to the individual. It was proposed
by Robert Merton in the 1938 (Agnew, 2008). Strain refers to events or conditions
that an individual dislikes, for example inability to achieve goals (mainly monetary
success), loss of positive stimuli, presentation of negative stimuli, and others. The
strains are said to cause emotions such as anger, fear, depression, which majority of
the people find legal ways of coping with. However, if an individual sees that they are
unable to cope with the strain, the affected individual often seeks a form of escape,
revenge, or alleviation from the strain, and thus the likelihood of committing crime
increases. Factors that increase the risk of resorting to criminal behaviour are lack of
social control, poor coping skills, and insufficient resources (Agnew, 2008).

Building upon strain theory, subcultures theory highlights status frustration
and differential opportunity as the causes of crime (Blackman, 2014). Individuals
unable to achieve cultural goals or expectations often reject them, and replace them
with their own where they find justification for their criminal action. They often form
groups, gangs, where acts such as crime are often treated with prestige and respect
from the peers in the group. Mainstream moral authorities such as parents, teachers
are replaced by the fellow members of the group. For an extensive discussion on
subcultural theories please refer to Blackman (2014).

Another theory focusing on factors of the environment, but still focusing on the
individual is social control theory which was introduced in Hirschi (1974). Rather
than asking why criminals engage in criminal activity, Hirschi asks why non-criminals
do not do so. The theory builds on the premise that all of us, beginning at birth,
have the hedonistic drive to act in selfish and aggressive ways that lead to criminal
behaviour. Hirschi posits that it is only through social bonds that we refrain from such
behaviours. He categorises the bonds in four categories (Pratt, Gau, and Franklin,
2018):

1. Attachment - it refers to the level of psychological affection that one has for
prosocial others and institutions. In practice, it means that thanks to the at-
tachment to parents, family, school, etc., one tries not to disappoint those that
he/she cares about.

2. Commitment - not wanting to look bad in front of those we are attached to
prevents us from criminal and aggressive behaviours. For example, the risk of
the break-up of marriage or of losing a job helps in refraining from any harmful
activities.

3. Involvement - if people spend their time in a prosocial activity they simply has
less time to pursue criminal activities. By being enganged in social, academic,
or athletic activities, the individuals will have less time for engaging in antisocial
activities. This is mainly related to youth population.

4. Belief - this refers to the degree to which one adheres to values associated with
lawful behaviour. Hirschi suggests that there is a strong link between attitudes
and behaviour.

According to Hirschi, these four types of social bonds come together to control our
behaviour indirectly - not all rules have to be written in the law - i.e. many rules
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are not written in the law, yet they are part of the social norms that we all observe
(Pratt, Gau, and Franklin, 2018). Although this theory is still controversial among
criminologists, it is still considered to be relevant. When the theory was presented it
provided strong empirical evidence for its claims, and thus raised the bar of experiment
quality in the criminology community (Pratt, Gau, and Franklin, 2018).

Lastly, labelling theory is a school of thought within criminology that deals with
not only the individual and the environment around them, but also involves thinking
about criminal justice system. We summarise the treatment on labelling theorists
from Jewkes and Letherby (2002, ch. 2). Their main concerns can be summarised in
two questions:

1. How is it that some behaviour is labelled deviant?

2. What are the consequences of that labelling process?

According to the proponents of this theory, reaction to the crime is more important
than the crime itself. The research of this group of theorists often focuses on bias
within agencies responsible for administration of justice, social impact of being la-
belled as deviant and others. In terms of policy, they advocate decriminalisation and
diversionary policies. Critics attack this theory for being based on a strong assump-
tion of the society being democratic and consensual. It seems that those who are in
power get to shape the normative view what is deviant and what is not.

1.1.3 Theories considering importance of the state

Rather than labelling theory’s view of society as consensual, this group of theories
views society as rooted in conflicting interests.

Firstly, there is a branch of literature that stems from the Marxist presumption:
“powerful in society use the various resources available to them (including the law)
to secure and maintain their dominant position” (Jewkes and Letherby, 2002). Cap-
italism creates a desire to consume, but not all members of the society are able to
participate to the same extent. As a result of capitalist process, there is more situa-
tions where those who have and those who do not are put in conflict with one another.
Subsequently, criminal behaviour is a result of class conflict and if a an individual
chooses to commit crime, it is viewed as a political expression. Within this wide class
of theories, radical criminology connects the Marxist ideas with labelling theory,
in which the the ruling class (those who have) are able to put labels on the lower
class thanks to their control of legal and penal system (Jewkes and Letherby, 2002).
Critical criminology, partially borrowing ideas from Marxist presumption explores
the ways in which class, gender, and race play a role in the criminal justice system.
Their hypothesis is that the state and its agencies serve to marginalise and conse-
quently criminalise some groups and not others. Often relying on history, proponents
of this theory question the objectivity of knowledge where they treat it as an ideology
that serves state and its practices. These theories were however not put into practice
(Jewkes and Letherby, 2002).

Lastly, one of the richest criminology theories is realism. We give a brief summary
of on this topic based on the treatment in Young (1992). Realists argue that criminol-
ogy should be faithful to the nature of crime. They define the crime square: offender,
victim, public, and police/state agencies. Whilst traditional criminology theories focus
mainly on the causes of offending, realism urges us to look at the other three com-
ponents as well: victim, police, and the general public. They see relative deprivation
as a major cause of criminal activity (similar to subculture theory). Stemming from
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involving all four forces when understanding crime is the principle of focusing on lived
realities. In practical terms it means avoiding generalisations by understanding social
context, choosing local approaches, breaking analyses into fine social axes such as age,
gender,class and race.

1.2 Statistical approaches to criminology

The two main approaches to crime modelling in the literature are crime forecasting
models and crime understanding models. The former approach is concerned with
accurately forecasting the crime rates. By interpolating the data, they are able to
build models based purely on space and time without including any external factors
such as socio-economic indicators. For example, Taddy (2010) treats criminal activity
as an inhomogeneous Poisson process with intensity specified by an auto-regressive
model, Flaxman et al. (2015) uses Gaussian Processes with a rich covariance function
to specify prior over the intensity of a Poisson process, Mohler (2013) treat crime
counts as realisations of self-exciting Hawkes process. These approaches tend to be
focused on the time-varying macro trends in criminal activity. While these approaches
are useful for law-enforcement agencies in deploying their limited resources, they do
not provide insights into the criminal activity, thus are of limited use for tasks such
as designing policies.

For the methods whose main concern is to reconcile the criminology-based theories
with data, the literature is divided into approaches that use socio-economic data to
help explain aggregate crime rates and the approaches which answer very specific ques-
tions within the local context of crime as advocated by the realists. In the first group,
Marchant et al. (2018) apply a semi-parametric regression model to crime rates in
Sydney, Australia, Osgood (2000) use Poisson regression to infer the drivers of crime,
and Deadman (2003) specify an econometric linear model, estimated by Ordinary
Least Squares method, to forecast residential burglaries in the United Kingdom. In
the second group, for example Johnson and Summers (2015) use data on thefts from
vehicles to corroborate crime pattern theory and social disorganisation theory, Kur-
land, Johnson, and Tilley (2014) test whether certain establishments such as soccer
stadium attract criminal activity.

1.3 Aims, Objectives

Our choice of methodology is to a large extent driven by the study area and the
data availability. Our study area is London, UK for which we are able to publicly
access location, type, and the month of each crime. Additionally we have access to
the UK census data which provides socio-economic indicators about the location in
question (Office For National Statistics, National Records Of Scotland, and Northern
Ireland Statistics And Research Agency, 2016). However, the data do not provide any
information about the offender, and therefore we will not be able to give evidence for,
or against, any theories which rely on understanding the offender. For this reason, our
method will be focused on finding links between aggregate rates of criminal activity
and external socio-economic factors.

The following list of objectives summarises what this work will attempt to achieve.

1. Specify models based on external socio-economic factors to create a representa-
tion of the true process driving crime.

2. The uncertainty in the models must be fully quantified.
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3. Employ appropriate tools to check performance of different models.

4. Prefer models that are parsimonious and interpretable.

5. Discuss strengths and weaknesses of the chosen modelling approaches.

6. The modelling approach should be scalable to large problem sizes.

After the introduction to criminology theory, a quick overview of statistical ap-
proaches and a set of objectives in this chapter, chapter 2 gives the mathematical
machinery used to build models. Chapter 3 gives the details of statistical inference,
results of which we report in chapter 4, and we give conclusions, and directions for
future work in chapter 5.
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2 Mathematical Background

Having identified environmental factors as a significant driver of crime in chapter 1,
we will treat criminal activity as an environmentally-driven stochastic process that
varies in space and time. Cox process has been a natural choice for environmentally
driven point processes in spatial statistics (Diggle et al., 2013). As described in the
original paper by Cox (1955), it is a suitable model for “events occurring haphazardly
in space or time”. In this chapter, we first give a formal definition of the Cox process,
then give details of log-Gaussian Cox process (LGCP), which is a variant of Cox pro-
cess that allows full uncertainty quantification using the Bayesian framework. The
model defines a latent function with a Gaussian Process prior to drive the intensity
of the Cox process. The properties of the Gaussian prior are specified using a set
of hyper-parameters. Subsequently, we describe two different approaches to statis-
tical inference for LGCP. The first approach proceeds by integrating out the latent
function using Laplace approximation to obtain an approximate marginal likelihood
which allows obtaining a point estimate of the optimal hyper-parameters. The opti-
mal hyper-parameters are then used to approximately infer the posterior distribution
of the latent function. In the second approach, which is fully-Bayesian, we treat the
hyper-parameters as random variables. Using a Markov Chain Monte Carlo sampling
scheme posterior distribution of all the quantities of interest can be inferred with
convergence guarantees. While the first approach is less demanding computationally,
it does not fully capture the uncertainty in the hyper-parameters and does not pro-
vide convergence guarantees for the posterior distribution of the latent function. We
conclude the chapter with a section focussed on computational issues.

2.1 Log-Gaussian Cox Process

Definition 2.1 (Cox Process). Given domain x, Cox process Y(x) is defined by two
postulates:

1. Λ(x) is a nonnegative-valued stochastic process;

2. conditional on the realisation λ(x) of the process Λ(x), the point process Y(x)
is an inhomogeneous Poisson process with intensity λ(x).

The suitability of Cox process is justified by the properties of Poisson distribution
that is at the core of the process. The Poisson distribution describes the probability
of a number of events occurring in a fixed interval given the rate at which these events
occur (Grimmett and Stirzaker, 2001). The events occur in an unstructured manner,
often referred to as the lack of memory property.

A popular choice of the intensity process, Λ(x), that satisfies definition 2.1 and
with extensively studied mathematical properties is

Λ(x) = exp(f(x)), (2.1)
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where f(·) is the latent function with a Gaussian process prior:

f(x) ∼ GP(m(x), kθ(·, ·)), (2.2)

where m(x) is the mean function, and kθ(·, ·) is the covariance function parameterised
by θ (Diggle et al., 2013). This version of Cox process was formally introduced by
Moller, Syversveen, and Waagepetersen (1998) and is referred to as log-Gaussian Cox
process. In the next section, we give overview of Gaussian processes.

2.1.1 Gaussian Processes

This treatment closely follows Rasmussen and Williams (2006), in both notation and
content.

Definition 2.2 (Gaussian Process). Gaussian Process (GP) is a stochastic process
whose finite-dimensional distributions are jointly Gaussian.

Gaussian Processes can be used to express distribution over functions. In the
Bayesian setting, it allows us to express our prior beliefs about a class of functions
before we observe any data.

Let f be the true function that we are interested in. Before observing any data,
we can express our prior beliefs using a GP. A GP is defined by the mean function
µ(x) and the covariance function kθ(·, ·). The mean function specifies the expected
value at any given location of the domain, and the covariance function gives a measure
of similarity/distance between function values at any two locations. The covariance
function is parameterised by hyperparameters θ. There are conditions that need to
be met in order for a function to be a valid covariance function. We discuss details of
covariance functions, including common examples, in section 2.1.2. For the purposes of
illustration in this section we assume a zero-mean GP prior with squared exponential
covariance function with lengthscale hyperparameter ` = 1. For example, four draws
from the GP prior are shown in Figure 2.1a. Next, we illustrate how observing data
changes the prior beliefs about the function f .

After observing function values f at locations X, our belief about the true function
f changes. By denoting any other locations than the observed ones as X∗, we can
express the posterior distribution of the function values f∗ at locations X∗, given that
we observed f at X. Given that the prior is a GP, the function values at observed
location and any other locations are jointly Gaussian (see equation A.2):[

f

f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
,

where K(X,X ′) is the covariance matrix with Kij = k(xi,x
′
j). Using the properties

of normal distribution (see equation A.3) it follows that f∗|X∗, X, f ∼ N (µ∗,Kf∗),
where

µ∗ = K(X∗, X)K(X,X)−1f

Kf∗ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗).

An example of posterior distribution over the functions with the GP prior after ob-
serving three function values is shown in Figure 2.1b

In a realistic scenario, the function values are not observable and we only observe
noisy versions of it, possibly with a transformation. For example, in the log-Gaussian
Cox process above, we can only observe a realisation of the random Poisson process
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(a) Four draws from the zero-mean GP
prior with squared exponential kernel with
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(b) Posterior distribution over functions
after three function values were observed.
Red line represents the mean, and the
shaded area around it is the 95% credible

interval.

whose intensity is driven by exp(f). We denote the vector of observations at a set
of locations X as y. The connection between the latent (unobserved) function f
and the observations y is often referred to as observation model and is denoted as
y|f . A common observation model is assuming that the each observation is a result
of perturbing the function value with independent identically distributed Gaussian
noise. This assumption results in a posterior distribution which is tractable. We do
not give more detail about this case due to our focus on log-Gaussian Cox process
model, but more details can be found in Rasmussen and Williams (2006, p.16). The
details of statistical inference for LGCP processes is dealt with in 2.2.

2.1.2 Covariance Functions

As already mentioned in 2.1.1, the covariance function is the part of the GP that
encodes nearness or similarity of two function values as a function of their locations.
In general, locations that are close to each other tend to have similar function value
and thus higher degree of covariance than the locations further apart. However, there
are use cases when more complicated stucture needs to be incorporated within a
covariance function. For example, there is a class of covariance functions which encode
periodicity.

Covariance functions are a special case of kernels. Kernel is a function k of two
arguments that maps the arguments x ∈ X ,x′ ∈ X to R. In order for a kernel to
be valid covariance function it must be positive semidefinite. A kernel is positive
semidefinite if ∫

k(x,x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0, (2.3)

for all f ∈ L2(X , µ) (Rasmussen and Williams, 2006). As a consequence, the gram
matrix for the covariance function k and a given set of inputs must be positive definite.
Gram matrix is a matrix with elements Kij = k(xi,x

′
j).

Choice of the covariance function for a particular problem is often determined by
the properties it satisfies. The summary of the most relevant properties is based on
Rasmussen and Williams (2006, sec. 4.1). Firstly, smoothness of the covariance func-
tion determines whether the resulting GP is continuous and differentiable. Depending
on the mean function of the GP, if the covariance function is continuous and differ-
entiable, the properties will carry over to the GP. Smoothness properties determine
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whether the inference is analytically tractable, e.g. using derivatives to guide the
search for optimal parameters. Another important property of covariance functions is
stationarity. It refers to invariance to translations in the input space. Consequently,
the resulting process has the same moments at any location, and the covariance func-
tion is only a function of of x−x′. If in addition, it holds that the covariance function
is a function of only |x− x′|, the covariance function is said to be isotropic.

There are cases in which it is desirable to combine existing covariance functions.
One such scenario is having separate kernel per dimension and then combining them
into a single kernel. For example, in spatio-temporal modelling the kernels for the
spatial dimension and the temporal dimension are specified individually and then
combined. Combining operations must however ensure that the resulting function is a
covariance function, i.e. satisfy equation 2.3. We state without a proof that the sum
of two covariance functions is a valid covariance function. Similarly, the product of
two covariance functions is a covariance function. For other operations that produce
valid kernel, and for proofs of sum and product, refer to Rasmussen and Williams
(2006). Next, we give examples of common covariance functions.

Squared Exponential

Squared exponential kernel, defined as

kSE(x,x′) = exp

(
|x− x′|2

2`2

)
, (2.4)

where ` is the characteristic lengthscale, is one of the most popular covariance func-
tions. The lengthscale parameter can be loosely interpreted as how fast the target
function oscillates - the larger the lengthscale the slower the oscillation. A more rig-
orous interpretation of the lengthscale is calculating the expected number of function
value upcrossings of a particular level as a function of `. For details, please refer to
Rasmussen and Williams (2006, sec 4.1-4.2) and Adler and Taylor (2007, sec 11.1).

Square exponential kernel is infinitely differentiable, hence the GPs with this co-
variance function are smooth. This kernel is also stationary and isotropic. Stein
(1999) argues that it is more prudent to specify the smoothness of the process using
data rather than apriori. The next class of kernels which we introduce allows for
controlling both the characteristic lengthscale and the smoothness.

Matérn

Matérn family of covariance functions is defined as

kMatern(x,x′) =
21−ν

Γ(ν)

(√
2ν|x− x′|

`

)ν
Kν

(√
2ν|x− x′|

`

)
, (2.5)

where ` is the characteristic lengthscale, ν is the smoothness parameter, and Kν is a
modified Bessel function (Rasmussen and Williams, 2006). It can be shown that that
the GPs with Matérn covariance functions are k-times mean-square differentiable if
and only if ν > k. This is important especially if inference methods based on likelihood
optimisation are chosen. Additionally, Abramowitz and Stegun (2013) show that if ν
is a half-integer, i.e. ν = p + 1

2 , the covariance function becomes especially simple,
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giving

kν=p+1/2(x,x
′) = exp

(
−
√

2ν|x− x′|
`

)
Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8ν|x− x′|

`

)p−i
.

(2.6)

For this reason, the most popular choices in machine learning have become ν = 3/2
and ν = 5/2. Left panel of Figure 2.2 shows covariance functions from the Matérn
family with fixed lenghtscale ` = 1 and varying smoothness ν. The right panel shows a
sample from the corresponding GPs. One can distinctly see the smoothness properties
of the GPs which correspond to different values of ν.

0 1 2 3 4
Input distance r

0.0

0.2

0.4

0.6

0.8

1.0

k(
r)

Matern-1/2
Matern-3/2
Matern-5/2
Matern-

4 2 0 2 4
Input x

3

2

1

0

1

2

3

Fu
nc

tio
n 

va
lu

e 
f(x

)

Figure 2.2

Other kernels

Given that the necessary and sufficient requirement for a valid kernel (equation 2.3)
gives a lot of freedom, there are many possibilities to encode various properties such
as periodicity. One such example is exp-sine squared kernel defined as

k
(
x,x′

)
= exp

−2 sin2
(
x−x′

2

)
`2

 , (2.7)

where ` represents the periodicity. This kernel is formed by first projecting the one-
dimensional input x into two-dimensional u(x) = (cos(x), sin(x)) and then applying
the square exponential kernel. This process is referred to as warping (Rasmussen and
Williams, 2006). Figure 2.3 illustrates the exp-sine squared covariance function with
period one (left), and two draws from such a process (right). For other examples of
kernels, please refer to Rasmussen and Williams (2006).

2.2 Inference

The goal of inference is to make conclusions about the true process or mechanism
giving rise to the data (Young and Smith, 2005). For our purposes, where we assume
an instance of log-Gaussian Cox process as the true random process (see sec 2.1),
we would like to understand the properties of the latent function f as well as its
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parameters θ. The two main approaches to statistical inference are the frequentist
approach in which the parameter values of the data generating process are treated
as fixed values, and the Bayesian approach that treats the parameters as random
variables. We consider it important to quantify the uncertainty in all the quantities,
including parameters, and therefore we choose to work in the Bayesian framework. It
allows inferring full posterior distribution of all the quantities of interest.

In the Bayesian framework, inference of the distribution of the unobserved quan-
tities, which in our case are the latent function values f and the hyper-parameters θ,
relies on Bayes’s theorem. Bayes’s theorem states that for a pair of random variables
X and Y ,

p(X = x|Y = y) =
p(Y = y|X = x)p(X = x)

p(Y = y)
. (2.8)

Now, we apply Bayes’s theorem in the context of log-Gaussian Cox process. Given
the vector of observed values y of Y (xi) at a set of locationsX = {x1,x2, · · · } the joint
model of the data y, corresponding latent function values f , and the hyper-parameters
θ has density

p(y, f ,θ) = p(y|f)︸ ︷︷ ︸
Poisson

p(f |θ)︸ ︷︷ ︸
GP

p(θ)︸︷︷︸
θ−prior

.

Our aim is to use data, y, to inform us about the posterior distribution of the latent
field values, as well as, the hyper-parameters. We apply the Bayes’s theorem to get

p(f ,θ|y) =
p(y|f)p(f |θ)p(θ)

p(y)
, (2.9)

where
p(y) =

∫
p(y|f)p(f |θ)p(θ)dθdf , (2.10)

which is intractable.
There are different options to overcome the intractability. Two very popular ap-

proaches that we will focus on are Laplace Approximation(LA) which we describe in
section 2.2.1, and Markov chain Monte Carlo sampling(MCMC) for which the back-
ground is given in 2.2.2.
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2.2.1 Laplace Approximation

For an approximate Bayesian inference, where the hyper-parameters θ are treated as
fixed values, we want to obtain the posterior distribution of p(f |y,θ). This, however,
requires knowing the true value of θ. A common approach is to approximately inte-
grate out the latent variables f to obtain p(y|θ), and maximise this quantity. Having
obtained the estimate of θ, p(f |y,θ) is then inferred using an approximation method.
One of the few possible approaches is Laplace approximation.

This exposition of Laplace approximation closely follows Bishop (2006, p. 213-
216). The main goal is to find an approximation to the intractable probability density
p(z) of which we have access to only an unnormalised version f(z), such that

p(z) =
1

Z
f(z).

Laplace approximation method finds a Gaussian density q(z) centered around the
mode of p(z), a point z0 such that

∇zf(z)|z=z0 = 0.

The mode of p(z) is the same as that of f(z). The mode is usually found by an
optimisation procedure which exploits the gradients such as Newton method.

Using the property of multivariate normal distribution, log of the density function
is a quadratic function of the vector of variables. For this reason, we perform Taylor
expansion of log f(z) around z0 up to and including second order which gives

log f(z) ' log f(z0) + (z − z0)> ∇z log f(z)|z=z0︸ ︷︷ ︸
=0

−1

2
(z − z0)>A(z − z0),

where A = −∇∇z log f(z)|z0 . After exponentiating the Taylor expansion of log f(z)
we obtain

f(z) ' f(z0) exp

(
−1

2
(z − z0)>A(z − z0)

)
,

which is in the form of an unormalised Gaussian density. Using the property of
Gaussian distribution, we obtain normalised density

q(z) = det

(
1

2π
A

)1/2

exp

(
−1

2
(z − z0)>A(z − z0)

)
= N (z|z0,A−1). (2.11)

Given the definition of this method, it is clear that the approximation will not
be good for random variables whose densities are multi-modal, or the density is dif-
ferent from Gaussian density which means that the approximation will not be able
to capture the global properties. Also, it is difficult to quantify the approximation
error in practice. MCMC, which we describe next, comes with central limit theorem
guarantees for convergence to the target distribution.

2.2.2 Markov Chain Monte Carlo sampling

The fully-Bayesian inference approach finds the posterior distribution of both of the
unobserved quantities, f and θ, given the observations y. However, for the purposes
of this section we assume a simple, non-hierarchical observation model for our data,
parametrised by vector θ, and with known density p(y|θ). We treat θ as a random
vector over which we place a prior p(θ).
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This overview follows closely Gelman (2014, ch. 11-12) and Rogers and Girolami
(2017, ch. 4, 9). The main idea lies in drawing correlated samples from an approximate
distribution of the posterior and then correcting those draws to better approximate
the target distribution. The MCMC methods create an ergodic Markov Process whose
stationary distribution is the quantity of interest p(θ|y) of which we have access to
only an unnormalised version, i.e. p(θ|y) ∝ p(y|θ)p(θ).

The samples are drawn sequentially such that the sequence forms a Markov Chain.
In other words, the distribution of the next sample θt given all the previous samples
depends only on the last value, θt−1. Stating without a proof, if the desired stationary
distribution and a particular set of transition rules (transition matrix if the state
space is discrete, transition kernel otherwise) satisfy the detailed balance condition,
the particular set of transition rules converges to the desired stationary distribution.
The detailed balance condition is given by

p(θi|y)p(θj |θi) = p(θj |y)p(θi|θj),

where p(θi|θj) is the probability of moving from state j to state i. Detailed balance
condition states that being in state j and moving to state i is equally likely as being in
state i and moving to state j (Rogers and Girolami, 2017). One of the most important
algorithms that simulates an ergodic Markov Chain and preserved the detailed balance
condition is Metropolis-Hastings algorithm. We also consider its variant Hamiltonian
Monte Carlo.

Metropolis-Hastings Algorithm

Metropolis-Hastings algorithms generates a set of samples θ1,θ1, . . . ,θNs , where Ns

is the number of samples/iterations. Each iteration involves two steps:

1. Proposal: at iteration t, the algorithm proposes a candidate sample θ∗ from the
previous sample, θt−1. The proposal can be anything as long as we define the
density

p(θ∗|θt−1).

In practice, the choice of proposal determines convergence and mixing properties
of the chain. The most important requirement is the ability to efficiently sample
from that density.

2. Acceptance/Rejection: the candidate sample, θ, is then tested whether it should
be accepted or not. It is this step that ensures that the Markov chain coverges
to the target distribution. If accepted, we set θt = θ∗, otherwise θt = θt−1.
The proposed sample is accepted with probability r, such that

r =
p(θ∗|y)/p(θ∗|θt−1)
p(θt−1|y)/p(θt−1|θ∗)

.

Note that if the proposal density is symmetric, p(θt−1|θ∗) = p(θ∗|θt−1), we
recover the simplified version of the algorithm called Metropolis algorithm.

The details of why Metropolis-Hastings scheme preserves the detailed balance condi-
tions can be found in Rogers and Girolami (2017, sec. 9.3).

From the theoretical perspective, the algorithm is guaranteed to converge to the
target distribution if we sample for long enough. In practice, it is not trivial to
claim that the chain has converged. Another issue is within-sequence correlation of
the draws as the new sample is proposed based on the previous sample, hence the
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correlation. Inferences using correlated samples are usually less precise than the ones
from the same number of independent samples. We give possible solutions to these
problems after we introduce Hamiltonian Monte Carlo.

Tuning of the proposal distribution can hugely alleviate the two problems above.
The ideal jumping distribution would closely approximate the target posterior distri-
bution. Adaptive proposals is a popular and simple approach to generate draws that
are less likely to get rejected (Gelman, 2014). In this approach, existing samples are
used to approximate the target distribution which is then used as the proposal density.
In the case of Gaussian random walk proposals it amounts to updating the covariance
matrix of the proposal distribution with the empirical covariance. Additionally, the
size of the proposal jumps can be scaled appropriately if the acceptance is either too
high, or too low. Gelman (2014) state that the optimal acceptance rate is around 25%.
For a detailed treatment of adaptive MCMC algorithms see Roberts and Rosenthal
(2009).

Hamiltonian Monte Carlo

Random walk Metropolis-Hastings algorithm may lead to inefficient explorations of
the sample space, especially in the case of oddly-shaped densities and in higher di-
mensions. Improved proposal densities can alleviate this issue, but as the number of
dimensions increases these measures become less effective. Hamiltonian Monte Carlo
is a variant of Metropolis-Hastings which takes advantage of the gradients of the tar-
get distribution in the proposal allows more rapid exploration of the sample space,
even in a high-dimensional target space. For each component θi of the target space,
the scheme adds a ‘momentum’ variable φj . Subsequently, θ and φ are updated
jointly in a series of updates in order to propose a new sample (θ∗,φ∗) that is then
accepted/rejected.

The proposal is largely driven by the momentum variable. The proposal step starts
with drawing a new value of φ from p(φ) which needs to be specified. Then in a series
of user-specified steps, L, the momentum variable φ is updated based on the gradient
of the log of the target density, and θ is moved based on the momentum. Usually, the
distribution of the momentum variable is N (0,M), where M is the so called ‘mass’
matrix. A diagonal matrix is often chosen in order to be able efficiently sample from
the momentum distribution. The full steps of the procedure are given in algorithm 1.

In contrast to Random Walk Metropolis-Hastings algorithm, the proposed sample
at each iteration is independent from the sample in the previous iteration. This is
thanks to an independent draw from the momentum variable at the beginning of each
iteration. The reason why HMC is suitable for high-dimensional problems is that in
order to efficiently explore the target space, the algorithm exploits gradients of log
of the target distribution. The gradients need to be available analytically, otherwise
numerical differentiation would require too many target density evaluations as the
number of dimensions increases.

The same considerations with regards to the convergence need to be taken. The
performance of the algorithm can be tuned in three ways: (i) choice of the momentum
distribution, which in the version above requires specifying the mass matrix, (ii) ad-
justing the scaling factor of the leapfrog step, ε, (iii) the number of leapfrog steps, L.
Gelman (2014) suggest setting ε and L so that εL = 1. They suggest tuning these so
that the acceptance rate is about 65%. As for the mass matrix, the authors suggest
that it should approximately scale with the inverse covariance matrix of the posterior
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Algorithm 1: Hamiltonian Monte Carlo as given in Gelman (2014).
Input: p(θ|y): unnormalised target density , p(φ): momentum density and

its mass matrix M , L: leapfrog steps, ε: scaling factor
Output: A list of samples from p(θ|y).

1 for t← 1, 2, . . . do
2 Sample φ from p(φ)
3 for i← 1 to L do
4 φ← φ+ 1

2ε
d log p(θ|y)

dθ
5 θ ← θ + εM−1φ

6 φ← φ+ 1
2ε
d log p(θ|y)

dθ

7 r = p(θ∗|y)p(φ∗)
p(θt−1|y)p(φt−1)

8 θt =

{
θ∗ with probability min(r, 1)

θt−1 otherwise
9 return [θ1,θ2, . . . ]

distribution, (Cov(θ|y))−1. This can be achieved by a pre-run from which empirical
covariance matrix can be computed.

Convergence diagnostics and correlation issues

Firstly, we would like to have a well-defined process which would tell us if our chain
of samples has converged to the target distribution. The simplest and first thing
to do is to get rid of the first samples, so-called burn-in samples. After the burn-
in samples have been discarded we would like to determine if the samples indeed
converged to the target distribution. A popular heuristic, developed by Gelman and
Rubin (1992), uses multiple chains started at different starting points, splitting the
chains in half, and then assessing how within-chain variance compares to between-
chains variance. We give an updated version of the original heuristic, as presented
in Gelman (2014).Define φ to be a single component of θ. We give details of the
procedure to assess if the samples of φ converged to the correct posterior distribution.
This procedure is repeated for each quantity of interest. Let m be the number of
chains after splitting, and n be the number of samples in each chain. Then, we label
the samples φij (i = 1, . . . , n; j = 1, . . . ,m), and compute within-sequence variance,
W , and between-sequence variance, B:

B =
n

m− 1

m∑
j=1

(
ψ.j − ψ..

)2
, where ψ.j =

1

n

n∑
i=1

ψij , ψ.. =
1

m

m∑
j=1

ψ.j (2.12)

W =
1

m

m∑
j=1

s2j , where s2j =
1

n− 1

n∑
i=1

(
ψij − ψ.j

)2
. (2.13)

The between-sequence variance estimate contains the factor n as it is based on the
variance of within-sequence means. Marginal posterior variance Var(φ|y) can the be
estimated by a weighted average of B and W

v̂ar+(ψ|y) =
n− 1

n
W +

1

n
B.
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This quantity overestimates the true marginal variance, but is unbiased under sta-
tionarity or in the limit n→∞. Then we compute the ratio R̂

R̂ =

√
v̂ar+(ψ|y)

W
.

This ration should decrease to 1 as n → ∞. In practice, if the ratio is still high, we
should keep sampling further.

Secondly, the issue of within-sequence correlation which can result in less precise
inferences. For this reason, samplers need to be run for a longer period of time
to achieve a desired level of accuracy. From the practical standpoint, if computer
memory is insufficient, the samples can be thinned. The thinned sample will usually
result in a lower within-sequence correlation of the samples but the information from
those samples is inevitably lost. One of the most common approaches to monitor
the ‘quality’ of the drawn sequence is called effective sample size. It is the size k
of independent samples from the quantity of interest whose average has the same
variance as the average of the drawn sequence for the quantity of interest.

k =
mn

1 + 2
∑∞

t=1 ρt
,

where ρt is the autocorrelation of the sequence at lag t, m and n denote the same
quantities as in convergence discussion. In practice, ρt is estimated using spectral
methods from the time series modelling. For more details, see Gelman (2014).

2.2.3 Fast linear algebra methods

Inference of the properties of log-Gaussian Cox processes involves expensive linear
algebra operations due to the presence of the Gaussian process prior p(f |θ). Scalability
of models to large grids demands efficient linear algebra operations. This will become
more clear in Chapter 3, but for now it suffices to say that the inference will require
the following operations involving the covariance matrix K of the GP prior: matrix
inverse (K−1), matrix-vector products (Kx), determinant (det(K)), gradient of K
with respect to the hyper-parameters θ (∂K∂θi ), and eigendecomposition (K = QΛQ>).
Additionally, we will also require log det(K+W ), whereW is a diagonal matrix. Since
the size of the matrix scales with the number of observed input points, it is vital that
we can perform the operations efficiently.

One approach to make linear algebra operations efficient on the covariance matrix
K is to assume special structure of the matrix. Motivated by the works of Saatçi
(2012) and Flaxman et al. (2015), we will assume that the covariance function k(x,x′)
is a product of D covariance functions, one per each dimension. For example, in two
dimensions we can write

k((x1, x2), (x
′
1, x
′
2)) = k1(x1, x

′
1)k2(x2, x

′
2).

Using the result from section 2.1.2 that the product of two valid kernels is a valid
kernel, together with the assumption that all the input locations are on a Cartesian
grid, leads to the covariance matrix that has a special form - it is a Kronecker product
of D covariance matrices, each of which is computed by projecting the input data onto
the respective dimension. Some of the linear algebra operations are able to exploit
Kronecker structure of matrices in order to perform computations faster. Next, we
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define Kronecker product and summarise results which follow from the Kronecker
structure of a matrix.

Kronecker methods

Firstly, we give a definition of Kronecker product as given in Golub and Van Loan
(2013, p. 27).

Definition 2.3 (Kronecker product). If A is an m1-by-n1 matrix and B is an m2-
by-n2 matrix, then their Kronecker product is an m1-by-n1 block matrix whose (i, j)
block is the m2-by-n2 matrix aijB. For example, if

C =

[
a11 a12

a21 a22

]
⊗

b11 b12 b13

b21 b22 b23

b31 b32 b33


then

C =



a11b11 a11b12 a11b13 a12b11 a12b12 a12b13

a11b21 a11b22 a11b23 a12b21 a12b22 a12b23

a11b31 a11b32 a11b33 a12b31 a12b32 a12b33

a21b11 a21b12 a21b13 a22b11 a22b12 a22b13

a21b21 a21b22 a21b23 a22b21 a22b22 a22b23

a21b31 a21b32 a21b33 a22b31 a22b32 a22b33


.

We state basic properties of Kronecker products that are relevant for the LGCP
inference. The properties are taken from Golub and Van Loan (2013, sec. 12.3) and
are stated without proof. Let A be an m-by-m matrix and B be an n-by-n matrix,
then

Transpose: (A⊗B)> = A> ⊗B>, (2.14)

Inverse: (A⊗B)−1 = A−1 ⊗B−1, (2.15)
Determinant: det(A⊗B) = det(A)n det(B)m, (2.16)
Trace: tr(A⊗B) = tr(A) tr(B). (2.17)

Other properties which Kronecker products exhibit and are relevant for LGCP
inference are eigendecomposition, gradients, and matrix-vector product. In this expo-
sition, we follow Saatçi (2012). Throughout, let the n-by-n covariance matrix K be
a Kronecker product of D matrices such that K = ⊗dKd:

Eigendecomposition Let Kd = QdΛdQ
>
d be the eigendecomposition of Kd. Then,

the eigendecomposition of K is given by QΛQ>, where Q = ⊗dQd, and Λ =
⊗dΛd.

Gradient The gradient of the covariance matrix K with respect to the hyperparam-
eters θi can be decomposed as follows:

∂K

∂θi
=

D∑
d=1

∂Kd

∂θi
⊗

⊗
j 6=d

Kj

 .

Matrix-vector multiplication Saatçi (2012) show that b = (⊗dKd)x can be com-
puted efficiently in O(n) time and space. By representing x as a tensor TxjD...j1 ,
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the vector b can be represented as a series of matrix-tensor products and tensor
transpose operations:

b = vec

((
K1 . . .

(
KD−1 (KDTx)>

)>)>)
,

where matrix-tensor products of the form Z = AT are defined as:

Zi1...iD =

size(T,1)∑
k=1

Ai1kTki2...id .

The operator > performs a cyclic permutation of the indices of the tensor:

Y>iDi1...iD−1
= Yi1...iD .

Log-determinant approximations

Another computation that we require is the calculation of log det(K + W ), where
W is a diagonal matrix.Again, let the n-by-n covariance matrix K be a Kronecker
product of D matrices such thatK = ⊗dKd. There are methods that exploit the Kro-
necker structure and thus reduce the computational cost, which, before optimisation,
is O

(
n3
)
.

Fiedler bound method Fiedler (1971) showed that for Hermitian positive semi-
definite matrices U and V :∏

i

(ui + vi) ≤ det (U + V ) ≤
∏
i

(ui + vn−i+1) ,

where ui and vj are sorted eigenvalues of U and V , respectively. Applying the
result to log det(K +W ):

log det(K +W ) ≥ log
∏
i

(ei + wi) (2.18)

=
∑
i

log (ei + wi) , (2.19)

where e1 ≤ e2 ≤ . . . en are the eigenvalues of K, and w1 ≤ w2 ≤ . . . wn are the
eigenvalues ofW . Thanks to the Kronecker structure ofK, the eigenvalues can
be obtained using O

(
Dn3/D

)
operations. Obtaining eigenvalues of W is trivial

because the matrix is diagonal. It is important to point out that bound is not
always a good estimate as it is biased - it is acceptable for certain tasks such as
optimisation, but for example cannot bed used for Monte Carlo methods.

Lanczos decomposition method This method follows closely Dong et al. (2017).
Let A = K +W . It can be shown that log det(A) = tr(log(A)), where log is
the matrix logarithm. For more details on matrix functions, see Higham (2008).
Dong et al. (2017) then use stochastic trace estimation. The approach relies on

tr(log(A)) = E(z> log(A)z),

where z is a random probe vector whose each component has mean 0 and vari-
ance 1. without going into too much detail, E(z> log(A)z) is computed by
sampling nz probe vectors and taking the mean. Each single computation of
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z> log(A)z is approximated using Lanczos-based computation which relies on
efficient computations of matrix-vector products. For a vector x, Ax can be
computed very efficiently due to Kronecker structure of K and W being a di-
agonal matrix. It turns out the log det(K + W ) can be computed in O(n)
computational steps. Dong et al. (2017) provides more details as well as error
analysis of the approximation.

This chapter has introduced log-Gaussian Cox process as a flexible framework for
modelling spatial point processes, including the inference procedures commonly used
for LGCPs. By treating crime spatial pattern as a realisation of a point process,
chapter 3 develops the methodology required to accurately fit the model to the data,
and make inferences from the model.
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3 Methodology

This chapter gives the details of methodology we use in order to achieve the objectives
formulated in section 1.3. Firstly, we describe the dataset that we will use for the
experiments, then we specify the discretised version of LGCP model, after which we
proceed with the details of the two inference methods: the approximate Bayesian
method using Laplace approximation, and the fully-Bayesian method using Markov
Chain Monte Carlo sampling.

3.1 Dataset

Our study area in this work is London, United Kingdom. For the purposes of building
models of criminal activity that are based on external socio-economic factors, we need
to have access to both the crime data, and the socio-economic data.

3.1.1 Crime data

The crime dataset is obtained from the UK Police website.1 Each entry refers to an
instance of a crime with the following fields recorded:

Location Only approximate location is reported due to privacy reasons. The location
is published as latitude and longitude.

Month Again, due to privacy concerns only the month of an incident is published.

Crime type Police use 15 crime type categories according to which each crime is
classified. The full list of the categories can be found in table B.1.

(a)
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320

(b)

Figure 3.1: Burglaries, London 2016. (Left) Point pattern of crime
over the map of London. (Right) Grid discretisation of the point pat-
tern. Each cell represents an area of 500m by 500m. and the colour

intensity indicates the count.

1https://data.police.uk/data/

https://data.police.uk/data/
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For example, figure 3.1a shows the point pattern of burglaries in London through-
out the year 2016. In order to be able to induce the Kronecker structure for the
inference (see section 2.2.3), we will discretise the LGCP process onto a Cartesian
grid. A grid discretisation where one cell corresponds to an area of 500m-by-500m is
shown in figure 3.1b. The discretisation is done by summing the number of incidents
that fall in to a cell. We treat the point observations as a realisation of the underlying
point process which is a random counting measure defined on the domain.

3.1.2 Socio-economic covariates

The modelling framework for Log-Gaussian Cox process which we introduced in sec-
tion 2.1 allows specifying a deterministic part of the intensity process, such that the
intensity function (equation 2.1) is replaced with

Λ(x) = exp
(
h(x)>β + f(x)

)
, (3.1)

where h(x) is a set of spatially indexed covariates, β is the vector of their coefficients,
and we set the mean function of the GP prior, f(x) to be 0. Another way of thinking
about this formulation is that of Poisson regression that accounts for spatial correlation
through the term f(x).

The dataset with socio-economic variables is sourced from the UK 2011 Census
(Office For National Statistics, National Records Of Scotland, and Northern Ireland
Statistics And Research Agency, 2016) and the portal of Mayor of London which
publishes statitics more frequently.2 Most of the statistics are collected at the spatial
granularity of an area unit called Output area (OA), but some of them are only
available at coarser levels: Lower layer super output area (LSOA), and Middle layer
super output area (MSOA). The OAs are built from clusters of adjacent postcodes
such that the OAs have similar population sizes and are as socially homogeneous as
possible. Each OA contains at least 100 persons and 40 households. The OAs roll
up into LSOAs and MSOAs. In order to align the data collected at OA, LSOA, and
MSOA levels, we overlay the geometry of those output areas on top of a grid. For a
specific cell of the grid, the value of the output area with the largest intersection with
the cell will be used. Figure 3.2 shows the median household income data collected
at the LSOA level (Left) and the projection onto a grid (Right).

Fourteen covariates were obtained from the sources above. The covariates along
with four summary statistic are shown in table 3.1.

3.2 Model

By combining the definition of Log-Gaussian Cox Process (definition 2.1) with the
deterministic component incorporating socio-economic covariates introduced in sec-
tion 3.1.2, the count of events in a region A, yA, is modelled as follows:

yA ∼ Poisson

(∫
x∈A

λ(x)

)
(3.2)

λ(x) = exp
(
h(x)>β + f(x)

)
(3.3)

f(x) ∼ GP(0, kθ(·, ·)) (3.4)

2https://data.london.gov.uk/

https://data.london.gov.uk/
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Figure 3.2: Median household income (in £) plotted over the map of
London. (Left) Heatmap of the data at the LSOA level as it was orig-
inally collected. (Right) Heatmap of the data obtained by projecting

the LSOA values onto a grid.

where x refers to a point in the spatial domain. Given an observation of crime counts
at n locations that are a subset of a grid, the discretised version of the model is

yi|fi,β ∼ Poisson
(

exp
(
Z>i· β + fi)

))
, (3.5)

where Z is a matrix whose i-th row is the set of covariates at location i.
To complete the specification of the model, we set the covariance function, kθ(·, ·),

to be the Matérn kernel with the smoothness parameter ν = 2.5. Matérn class is
a recommended choice in spatial statistics because of its flexibility to specify both
smoothness (ν) and lengthscale (`). (Stein, 1999). In practice it is hard to jointly
estimate ` and ν due to identifiability issues. Often, ν is set a priori to one of the
values that make it computationally efficient (see section 2.1.2). We expect the count
observations to vary smoothly, so we fix ν = 5/2. Additionally, we specify variance
of the GP prior, σ2. This quantity can be thought of as ‘amplitude’ of the prior.
Afterwards, the final form of the covariance function is

kν=5/2(r) = σ2

(
1 +

√
5r

`
+

5r2

3`2

)
exp

(
−
√

5r

`

)
. (3.6)

As a consequence of the formulation above, the likelihood of the n observations y
given the corresponding latent variables f , parameters β, and hyper-paramters θ is

p(y|f ,β,θ) = p(y|f ,β)p(f |θ)p(β)p(θ), (3.7)

where p(y|f ,β) factorises as
∏
i p(yi|fi,β), with each p(yi|fi,β) being the Poisson

density, p(f |θ) is a multivariate Gaussian density with mean 0 and covariance matrix
K, p(β) is the prior for the coefficients of the covariates, and p(θ) is the prior for the
hyper-parameters.

3.2.1 Model performance assessment

Our ultimate goal is to create a model that is as truthful as possible to the true process
that generated the observations.
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Covariate min max mean SD

Median House Price (£) 125238.00 4650000.00 513997.56 327316.94
Percentage of Houses 0.00 1.00 0.69 0.26
Population Density 2.90 246.70 52.25 40.53
Percentage of L4 Educated 7.98 69.69 29.17 11.57
Percentage of Immigrants 0.37 0.82 0.64 0.09
Percentage of Unemployed 0.01 0.14 0.05 0.02
Median Household Income 25690.00 88090.00 39899.78 7413.65
Percentage of Households with
No Car 0.03 0.84 0.30 0.18

Percentage of Non-religious 0.01 0.45 0.20 0.08
Median Age 20.00 55.00 36.69 5.71
Percentage of Age under 16 0.03 0.40 0.20 0.05
Percentage of Age 16 to.24 0.05 0.66 0.12 0.04
Percentage of Age 25 to 65 0.24 0.77 0.55 0.06
Percentage of Age over 65 0.01 0.36 0.14 0.06

Table 3.1: List of covariates considere for fitting the model and sum-
mary statistics

Root mean square error (RMSE)

As an absolute measure of predictive performance of a model, we first consider root
mean square error (RMSE). It is a metric that measures the difference between the
observed values and the values predicted by the model. By letting ŷ be the estimate
obtained by the model, and y be the observed sample, RMSE is obtained by computing

RMSE =
√

E ((ŷ − y)2) (3.8)

This metric unfortunately does not take into account the complexity of the model
and relying solely on this metric can lead to models that overfit the training data and
perform poorly on out-of-sample data.

Watanabe-Akaike information criterion (WAIC)

There have been a number of approaches proposed in the literature to measure pre-
dictive performance of a model while taking into account complexity of the model.
Given that we operate in the Bayesian setting, Watanabe-Akaike Information Crite-
rion (WAIC) is the most applicable approach as it uses the entire posterior. The
criterion computes the log pointwise predictive density and corrects for the effective
number of parameters. The definition we present is adapted from Gelman (2014).
Given a set of observations yi, where i ∈ {1, . . . , n}, and the vector of parameters or
unobserved quantities θ, of which we obtain S posterior samples (θ1, . . .θS), the log
pointwise predictive density is computed as

lppd =
n∑
i=1

log

(
1

S

S∑
i=1

p(yi|θs)

)
. (3.9)
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TheWAIC correction term that estimates the number of effective parameters is defined
as

pWAIC =

n∑
i=1

V S
s=1(log p(yi|θs)), (3.10)

where V S
s=1 computes the sample variance. The final value of the WAIC criterion is

then given by

WAIC = −2lppd + 2pWAIC. (3.11)

The WAIC does not have units and is not normalised. Therefore, it is mainly used as
a relative measure of predictive performance. Lower values of WAIC indicate better
predictive performance.

3.3 Approach 1: Laplace approximation for approximate
Bayesian inference

In our first approach to inference, we treat the hyper-parameters θ as fixed values and
exclude the covariates, i.e. Z = 0. The inference will proceed by inferring the posterior
distribution of the latent field f given the observed data and the hyper-parameters,
p(f |y,θ), using Laplace approximation. Accurate inferences and predictions require
knowing the true value of θ. The optimal value of θ is found by maximising the
marginal likelihood p(y|θ). This approach is inspired from and closely follows Flaxman
et al., 2015.

First, using Bayes’s theorem, we obtain an unnormalised version of p(f |y,θ):

p(f |y,θ) =
p(y|f)p(f |θ)

p(y)
(3.12)

∝ p(y|f)p(f |θ). (3.13)

By defining Ψ(f) := log p(f |y,θ)
const
= log p(y|f) + log p(f |θ), the Laplace approxima-

tion (see equation 2.11 in section 2.2.1) of the posterior density is given by

p(f |y,θ) ≈ N
(
f |f̂ ,−(∇∇fΨ(f̂))−1

)
. (3.14)

The posterior mode, f̂ , is found using Newton method because solving ∇Ψ(f) = 0 is
not analytically tractable. The update step of the Newton method is:

fnew = f − (∇∇fΨ(f))−1∇fΨ(f). (3.15)

The optimal value of θ is found by maximising the marginal likelihood

p(y|θ) =

∫
p(y|f)p(f |θ)df

=

∫
exp (Ψ(f)) df .

(3.16)

Using a Taylor expansion of Ψ(f) around the mode f̂ , Ψ(f) ' Ψ(f̂)− 1
2(f− f̂)>A(f− f̂),

whereA = −∇∇Ψ(f)|f̂ . Substituting the 2nd order Taylor expansion estimate of Ψ(f)
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into equation 3.16, we obtain

p(y|θ) ' q(y|θ) =

∫
exp

(
Ψ(f̂)− 1

2
(f − f̂)>A(f − f̂)

)
df

= exp
(

Ψ(f̂)
)∫

exp

(
−1

2
(f − f̂)>A(f − f̂)

)
df

= exp
(

Ψ(f̂)
)

det
(
2πA−1

)1/2
.

(3.17)

3.3.1 Computations

In this section, we give the full algorithm that infers the distribution of the latent
field f given the observed counts y and the fixed hyperparameters θ. The algorithm
also computes the marginal likelihood p(y|θ) in order to find the optimal value of
θ. Before we present the full algorithm, we give the full details of the computations
required.

In order to write the full expression for the Newton step and the marginal likelihood
(equation 3.15), we need

∇Ψ(f) = ∇ log p(y|f) +∇ log p(f |θ)

= ∇ log p(y|f)−K−1f
(3.18)

∇∇Ψ(f) = ∇∇ log p(y|f) +∇∇ log p(f |θ)

= −W −K−1,
(3.19)

where W := ∇∇ log p(y|f) is an n× n diagonal matrix. For the Poisson observation
model, Wii = exp(fi), and ∇ log p(y|f) = y − exp(f).

Rasmussen and Williams (2006) show that most of the computations can be ex-
pressed using the symmetric positive definite matrix

B = I +W
1
2KW

1
2 , (3.20)

whose eigenvalues are bounded below by 1, and bounded above by 1+nmaxij(Kij)/4.
The bounds guarantee that the matrix is well-conditioned for many covariance matri-
ces which results in numerically stable matrix computations.

The Newton step

Using the expressions above, the Newton step is given as

fnew = f +
(
K−1 +W

)−1 [∇ log p(y|f)−K−1f
]

= K
(
b−W

1
2B−1W

1
2Kb

)
,

(3.21)

where b = ∇ log p(y|f) +W f . For the full derivation, see section C.1.1. In order to
avoid Cholesky factorisation of B which requires O

(
n3
)
operations, we perform the

updates on a = K−1f . As a result, the update step can be expressed as

Bz = W
1
2Kb, (3.22)

where z = W− 1
2 (b−a). Equation 3.22 can be efficiently solved for z using conjugate

gradient method utilising the Kronecker structure of K and the diagonal structure of
W . We adapt conjugate gradient method presented in (Shewchuk, 1994) to account
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for the special structure ofW and K. After solving for z, the new value of a is given
as

a = b−W
1
2z.

Marginal likelihood computation

For finding the optimal hyper-parameters θ, we optimise the log of the marginal
likelihood. For a given θ, using equation 3.17, we obtain

log p(y|θ)
const
= log p(f̂ |y) +

1

2
log
∣∣(2π(W +K−1)−1

∣∣ (3.23)

= log p(y|f̂)− 1

2
f̂>K−1f̂ − 1

2
log |I +KW | , (3.24)

where f̂ is obtained using the Newton method described above. The full details of the
derivation are shown in section C.1.2.

The only operation which is not able to exploit the Kronecker structure of K and
the diagonal structure of W is log |I +KW |. By expressing the log determinant as
log
∣∣K +W−1∣∣ |W | = log

∣∣K +W−1∣∣+ log |W |, approximation methods introduced
in section 2.2.3 are applicable. In order to choose between Fiedler bound and stochastic
Lanczos approximation, we designed an experiment which simulated an LGCP process.
After maximising the marginal likelihood, while using the respective method for the
log determinant calculation, we obtained inferred paramters θ. In our experiment,
the Fiedler bound estimate was more biased. Figure 3.3 shows the results of the
experiment and compares it with the calculation obtained using the true value of the
determinant. Due to larger bias of the Fiedler bound method, we did not pursue the
Fiedler bound further. In our implementation, the code for Lanczos approximation is
provided by Gardner et al. (2018).
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Figure 3.3: Log marginal likelihood of the data given the hyperpa-
rameters obtained via Laplace approximation. The method requires
computation of log |I +KW |. We compare two approximations of log
determinant against the true value and how it affects the inference.
Fiedler bound approximation leads to a very different value from the

true value (` = 1.2, σ2 = 3).
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Full algorithm

Combining the Newton step and the log-marginal likelihood calculation, the full al-
gorithm for inference is given in algorithm 2.

Algorithm 2: Laplace approximation of the posterior latent field.
Input: θ, K as a list of Kd matrices, p(y|f ,θ): observation model, y

observations
Output: f : mode of the posterior, Z: the marginal likelihood

1 a← 0
2 repeat
3 f ←Ka
4 W ← ∇∇ log p(y|f)
5 b← ∇ log p(y|f) +W f

6 Solve Bz = W
1
2Kb using CG

7 a← b−W
1
2z

8 until convergence of a
9 Z ← Lanczos-based algorithm to solve log |I +KW |

10 return f , Z

3.4 Approach 2: MCMC for fully-Bayesian inference

The Laplace approximation method above has a limitation of not being able to quan-
tify uncertainty in the hyper-parameters θ. In this section, we treat θ as a random
variable, and we consider the semi-parametric formulation with covariates included in
the model. As before, we operate on a computational grid.

In order to complete the model specification we specify prior distributions for β,
and θ. Due to the constraint of θ > 0 and practical reasons which will become
apparent later, we transform the hyper-parameters into log-space: φ = log θ. Since,
we do not have any strong beliefs about the true value of θ, an uninformative prior is
used:

log(θ) ∼ N (0,Σφ)

Σφ = 103I
(3.25)

In line with our objectives to quantify the explanatory variables for crime, we a
priori assume that a specific covariate is not significant in explaining the crime rates.
We would like the data inform us, whether this assumption is true or otherwise.
Therefore, we set the prior of β as

β ∼ N (0,Σβ)

Σβ = 10I
(3.26)

Our goal is to design a scheme to obtain the joint posterior distribution of θ, β,
as well as f which is necessary for making predictions. It is well known that efficiently
sampling from the join distribution of the latent variables and hyper-parameters is
difficult. As explained in Filippone and Girolami (2014), it is extremely unlikely that
a set of latent variables, parameters, and hyper-parameters that are consistent with
each other and the data is proposed. One possible remedy, introduced in the same
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paper for a model without covariates, is to define a Gibbs scheme where the hyper-
parameters and the latent variables are sampled in turn, such that θ is sampled from
independently of f . This is achieved by sampling from an approximation of p(θ|y).
We briefly considered this approach, but it turned out that, we were not fully able to
utilise the Kronecker structure of our model. Because of our objective to provide a
highly-scalable framework, we did not pursue this further.

The difficulty of jointly sampling from the joint posterior of the latent variables, the
parameters, and the hyper-parameters can be overcome to some extent by informing
the sampling proposal about the properties of the posterior distribution. Hamiltonian
Monte Carlo sampling algorithm, introduced in section 2.2.1, takes advantage of the
geometry of the posterior in proposing a new sample. The only requirement is that
the gradient of the posterior distribution can be expressed analytically. Our model
has analytic gradients, and the Kronecker structure of the covariance matrix K can
be exploited. We give the full details of the derivation of the HMC scheme below.

The target distribution we want to sample from is p(f ,β,θ|y) of which we have
access to only an unnormalised version

p(f ,β,θ|y) ∝ p(y|f ,β)p(f |θ)p(θ)p(β). (3.27)

Next, we require the gradient of the log posterior with respect to [f ,β,θ]>:

∇ log p(f ,β,θ|y) =

 ∇f log p(f ,β,θ|y)

∇β log p(f ,β,θ|y)

∇φ log p(f ,β,θ|y)



=

 ∇f log p(y|f ,β) +∇f log p(f |θ)

∇β log p(y|f ,β) +∇β log p(β)

∇φ log p(f |θ) +∇φ log p(θ)


(3.28)

Note that we sample from the θ in the log-space, hence the gradient with respect to
φ = log θ.

Without showing the detail (see section C.2), the components of the gradient are

∇f log p(f ,β,θ|y) = [y − exp(Zβ + f)] +
[
−K−1f

]
(3.29)

∇β log p(f ,β,θ|y) =
[
Z>y −Z> exp(Zβ + f)

]
+
[
−Σ−1β β

]
(3.30)

∇φi
log p(f ,β,θ|y) =

[
1

2
f>K−1

∂K

∂φi
K−1f − 1

2
tr

(
K−1

∂K

∂φi

)]
+
[
−(Σ−1φ φ)i

]
(3.31)

It is clear that equation 3.29 can utilise the Kronecker structure of K, resulting in
O
(
Dn3/D

)
operations required for the inverse of K. Equation 3.30 is also computa-

tionally efficient as all the operations require only O(n) operations. For equation 3.31,
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as Saatçi (2012) shows, the computation can be broken down into operations only in-
volving the smaller matrices KD such that K =

⊗D
d=1Kd:

tr

(
K−1

∂K

∂φi

)
= tr

( D⊗
d=1

K−1d

) D∑
d=1

∂Kd

∂φi
⊗

⊗
j 6=d

Kj


=

D∑
d=1

tr

(
K−1d

∂Kd

∂φi

)∏
j 6=d

tr
(
K−1j Kj

)
, (3.32)

where ∂Kd
∂φi

is an element-wise gradient. For example, for the Matérn-5/2 covariance
matrix (see equation 3.6), the gradient with respect to the log-lengthscale, φ` = log `,
is given by

∂

∂φ`
kν=5/2(r) = σ2 exp

(
−
√

5r

`

)(
5r2

3`2
+

5
√

5r3

3`3

)
. (3.33)

The full derivation of this result is shown in section C.2.

3.4.1 HMC algorithm tuning

As already discussed in section 2.2, the performance of an HMC scheme is tuned
using three parameters. Firstly, the mass matrix, M , should roughly approximate
the inverse of the posterior covariance of the quantities we sample from. Next, one
can adjust the number of leapfrog steps, L, and the scaling factor, ε. Gelman (2014)
recommends to set L and ε such that Lε = 1. A high-level procedure of the tuning of
the HMC scheme for our problem is described below:

1. Firstly, we initialise the mass matrix of the momentum distribution, M , to
the inverse of the approximation of the posterior covariance of (f ,β,θ). For
computational reasons we forceM to be diagonal, i.e. consider only the inverse
of the variance. The variance of f can for example be estimated from the Laplace
approximation above. For the parameter θ, we take a trial and error approach.
We learnt that in practice it is sufficient to specify the values with only the order
of magnitude accuracy. We estimate the posterior variance of the coefficients β
by fitting a Poisson regression which assumes i.i.d. noise. This was sufficient to
get the algorithm started. We also initialise L = 10 and ε = 0.1.

2. After the initialisation, we keep sampling and adjusting the values of L and ε,
until the acceptance rate is about 65% as suggested by Gelman (2014). Af-
ter each adjustment, the previous samples are thrown away to keep the chain
ergodic.

3. At iteration Nburn-in all the previous samples are thrown away. This value is set
to an iteration number at which the chain is ‘stabilised’ according to the trace
plots, but could be quantified by the Gelman-Rubin diagnostic defined in 2.2.2.

4. AfterNcalibration samples, we compute the empirical covariance from theNcalibration−
Nburn-in samples. We set the diagonal ofM to the inverse of the diagonal of the
empirical covariance matrix.

5. Afterwards, we keep sampling and adjusting the values of L and ε, until the
acceptance rate is about 65%. After each adjustment, the previous samples are
thrown away to keep the chain ergodic.
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6. Once the chain has stabilised and the acceptance rate is around 65%, we start
collecting the samples to be used for inferences later.

The dataset, the family of models, and the details of the two inference methods
that we introduced in this chapter are applied in chapter 4 where we report the results.
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4 Results and discussion

This chapter presents results obtained by using the inference procedures described in
chapter 3. Throughout this chapter, there are three dimensions along which a specific
model can be evaluated. Firstly, the model specification which is either semi-
parametric or non-parametric, secondly, it is the inference method which is either
Laplace approximation or Markov Chain Monte Carlo sampling, and lastly, it is the
crime type. We start with the evaluation of non-parametric models in section 4.1,
and then move to the semi-parametric models in section 4.2 where we also discuss the
variable selection problem and its impact on the performance of a model.

Throughout this chapter, we narrow down our focus to two crime types: burglary,
and theft from the person. Although both crime types involve stealing, they are very
different. While for burglary the main target is a property, for theft from the person
it is a person themselves. Burglary mainly occurs at locations with either residential
or commercial properties. Theft from the person tends to cluster around the locations
with high pedestrian traffic. Figure 4.1 shows the heat-map of both crime types using
the data from 2016.
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Figure 4.1: Heat-map of crime counts from 2016 plotted over the
map of London.

4.1 Non-parametric model

In this section, we focus on non-parametric formulations of the LGCP as given in
equation 3.5. Due to its simple formulation, we expect it to have limited explanatory
power in terms of dynamics of crime. While the lengthscale hyper-parameter explains
the degree of “similarity” of any two neighbouring locations it does not capture the
underlying mechanisms of crime such as socio-economic predictors. For this reason,
the focus of this section is on comparing Laplace approximation (LA) to MCMC
sampling. The reported results are obtained from a model whose domain is discretised
into a grid of cells, each of which corresponds to an area of 500m by 500m in real life.

Firstly, we compare the inferred hyper-parameters: lengthscale (`) and variance
(σ2). Although the estimates are different in nature, the LA estimate is a point
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estimate and MCMC estimate is a set of samples from the posterior distribution, one
can compare the mode of the MCMC estimate to the LA estimate. Using the burglary
dataset as an example, figure 4.2a shows the heatmap of marginal likelihood, p(y|θ),
and its maximum value which corresponds to the ‘optimal’ set of parameters under
the LA scheme. Figure 4.2b shows the posterior distribution of p(θ|y) obtained using
MCMC sampling.
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(a) Marginal likelihood p(y|θ). The opti-
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misation procedure.
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(b) Histogram of samples from p(θ|y) ob-
tained using MCMC.

Figure 4.2: Hyper-parameter estimation using London burglary 2016
dataset - comparison of LA and MCMC estimates of the hyperparam-
eters. Analogous plots for theft from the person dataset can be found

in figure D.1.

It is interesting to see that the LA point estimate lies in the tails of the posterior
distribution obtained using MCMC. The estimate from MCMC suggests that the
latent function that drives the intensity of the Poisson process is smoother than the
LA inference suggests. This is visualised in figure 4.3, where the mean and standard
deviation of the posterior of the latent function is plotted over the map of London for
both methods of inference. The ‘smoothness’ of the MCMC estimate is more visible
in the standard deviation plots. Also note that the posterior distribution of the latent
surface is more dispersed for location with low observed count of criminal activity.
This can be seen by higher values of posterior standard deviations (for both LA and
MCMC methods) in figure 4.3.

Although it intuitively makes sense to prefer a fully-Bayesian MCMC method
due to its convergence properties (see section 2.2.2) and the ability to express full
uncertainty about both the latent function and the hyper-parameters, we also provide
supporting evidence by computing RMSE and WAIC criterion. Table 4.1 shows both
of the metrics for London 2016 burglary and theft from the person datasets. As
expected, the MCMC inference provides significantly better fit as can be seen mainly
in the difference between the WAIC values for the two approaches.

The poor performance of the LA method compared to the MCMC method on the
same model specification and on the same data could be attributed to two factors:

1. Marginal likelihood that is used to optimise the hyperparameters is a stochastic
estimate as discussed in section 3.3. The noise in the estimate, which to a large
extent depends on the condition number of the covariance matrixK, could cause
that the optimal value is not found.
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Figure 4.3: Inference of the posterior of the latent function, p(f |y).
Dataset: London burglary 2016. For analagous plots on theft from the

person see figure D.2.

Method
Burglary Theft from the person

RMSE WAIC RMSE WAIC

LA 4.8387 37039.242 2.6385 20942.765
MCMC 3.6302 32914.493 2.4407 17706.148

Table 4.1: Comparison of the fit of MCMC and LA.

2. The assumption that the posterior p(f |y) can be approximated by a Gaussian
density might be too strong, especially for locations with little data.

Having demonstrated the superiority of the fully-Bayesian approach, we will not
consider the LA method in subsequent evaluations. It is important to note that the
MCMC approach is more computationally demanding and the inference generally
takes longer than it does for the LA method.

4.2 Semi-parametric models

The non-parametric model acts as a smoothing kernel for the latent surface f . Al-
though a very succinct formulation, figure 4.3 shows that the posterior variance of the
latent surface f is too large at some locations. Visual inspection of the population
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density and the posterior variance, shown alongside each other in figure 4.4, suggests
that the variance is higher at locations with low population density. This strongly
suggests that the variance of the model predictions can be reduced by including a
deterministic component into the intensity function as described in section 3.1.2. Mo-
tivated by this finding, we proceed with formulating a set of richer models that include
socio-economic predictors such as population density.
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Figure 4.4: (Left) Population density expressed as the number of
people per hectare plotted over the map of London. (Right) Posterior
standard deviation of the latent surface f as estimated using MCMC

for London burglary 2016 dataset.

Following the preliminary exploratory analysis of the relationship between the
logarithm of crime counts and the individual covariates using QQ plots, we have
decided to regress the log intensity of LGCP on the log of the covariates as it results
in a more linear relationship for most of the covariates. Additionally, this choice
results in more interpretable coefficients β. The coefficients can then be interpreted
as elasticities. By applying the log to the covariates h(x) in the original intensity
function of the LGPCP process (equation 3.3) we obtain

λ(x) = exp
(

(logh(x))>β + f(x)
)
.

Then the elasticity of this intensity function with respect to a covariate hi(x) is given
as

elasticity =

∂λ(x)

∂hi(x)

λ(x)

hi(x)

=

λ(x)
1

hi(x)
βi

λ(x)

hi(x)

= βi.
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4.2.1 Model 1

Drawing on the discussion above, the baseline model for this section includes only
population density as the covariate. In other words,

h(x)>β = β1 + β2 log population_density(x), (4.1)

where β1 corresponds to the intercept. We fit the model to two datasets: London
2016 burglary crimes and London 2016 theft from the person crimes. The domain
of the model is a grid with a cell size corresponding to an area of 750m by 750m.
Figure 4.5 shows the posterior of the inferred quantities: the coefficients and the
hyperparameters. Firstly, we can see that thanks to smaller spatial variations of the
burglary counts, the histograms for the posterior quantities for the burglary model
are more sharply peaked.

The intercept for burglary just above 0 and the population density elasticity of
burglary crime count of around 0.6 corresponds to a steady state of crime counts across
the domain with expected increases as a result of higher population density. This is in
contrast with theft from the person model that identifies lower crime counts across the
domain (due to the negative intercept), but sharply increased crime counts for areas
with high population density. This is what one would expect as theft from the person is
a crime whose subject is a person rather than a property. This argument is supported
by visual inspection of crime counts of theft form the person (see figure 4.1b) where
the intensity of hotspots is more pronounced than it is for burglary (see figure 4.1a).

The unexplained residuals that correspond to the latent surface f , also provide
evidence that spatial variation of the crime count intensity is higher for theft from
the person that it is for burglary, suggested by the distribution of the lengthscale
parameter, `, in figure 4.5b.

2.5 0.0

Intercept

0.5 1.0

Density [per ha]

burglary theft-from-the-person

(a) p(β|y)

1 20

200

400

600
2

0.8 1.00

50

100

150

200

burglary theft-from-the-person

(b) p(θ|y)

Figure 4.5: Posterior distributions of the coefficients of the covariates
(Left), and the hyper-parameters of the GP prior of the latent function

(Right).

To show that including population density as a covariate improves predictive per-
formance of the model, we compute RMSE, WAIC which have both improved for both
burglary and theft from the person. The values are reported in table 4.2.

Another way of looking at predictive performance is to look at the variance of
predictions. To this end, we compute standard deviation of the posterior log intensity
of the LGCP model,

√
Varf ,β,θ|yΛ(x). Figure 4.6 shows this quantity for both the non-

parametric model and the semi-parametric model that includes population density as
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Figure 4.6: Standard deviation of the posterior log intensity of
LGCP. Dataset: London burglary 2016.

an explanatory variable. It shows that including the information about population
density shrinks the variance of model predictions.

4.2.2 Model 2

Building upon the population density model above, we add more socio-economic co-
variates. In the choice of predictors, we are mostly inspired by social disorganisation
theory which suggests that offenders choose neighbourhoods with low social cohesion.
Additionally, out of all the theories we outlined in section 1.1, social disorganisation
theory focuses on indicators that we have access to via census data. On top of the
covariates in the previous model, we believe that the following covariates will provide
explanatory power for varying crime rates: median age, median household income, un-
employment rate, median house price, percentage of immigrants, percentage of people
with level 4 education and above. In other words, the deterministic component h(x)
of equation 3.1 is equal to

h(x)>β = β1 + β2 log population_density(x)

+ β3 log median_age(x)

+ β4 log median_household_income(x)

+ β5 log median_house_price(x)

+ β6 log percentage_of_unemployed(x)

+ β7 log percentage_of_immigrants(x)

+ β8 log percentage_of_L4_education(x)

(4.2)

The model in equation 4.2 is fitted using the MCMC scheme described in sec-
tion 3.4. For traceplots of the MCMC inference see figure D.3. Figure 4.7 reports the
posterior distributions for the coefficients of the covariates, p(β|y).

The intercept, whose value for both crime types is centred around −1, indicates
relatively low baseline rate of crime counts across the map.

Population density can be interpreted in the same way as in the simple model.
The more populated areas attract more crime, and this is more so for theft from the
person.
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Interestingly, the median age statistic has a strong decreasing effect on the crime
count rate. This could be related to the fact that people tend to offend at younger
ages. This would suggest that they offend in their own neighbourhood. The youth
offending is a strong theme within strain theory and subcultures theory, where lack of
ability to achieve cultural goals and differential opportunity leads youth population
to resort to illegal ways of achieving those goals. The decreasing effect is stronger for
theft from the person.

Positive values of β3 and β4 suggests that more affluent neighbourhoods are more
likely to become a target of offending than the poorer ones. Rather surprisingly, we
would expect median house price to be a stronger attractor for burglary. In fact, it
has stronger effect on theft from the person than on burglary.

Percentage of unemployed seems to as expected to have increasing effect on the
crime count rates. This finding is consistent with social disorganisation theory, as
neighbourhoods with higher unemployment rates are expected to be less socially co-
hesive.

Social disorganisation theory suggests that offenders often prefer areas with high
level of immigration. Our model demonstrates that increased proportion of immi-
grants in the area has the opposite effect, for both burglary and theft from the person.
Without identifying the reason for this, we conjecture that a large proportion of im-
migrants in London are highly-skilled workers who do not tend to engage in criminal
activity. This observation invites a deeper investigation, which involves interactions
between different covariates.

Proportion of highly-educated population in the area is positively correlated with
the crime count rates. Given that this effect is stronger for theft from the person which
peaks in the city centre and the areas of commercial activity, this could suggest that
areas that are closer to the city centre have higher proportions of educated people.
However, this hypothesis needs to be further verified.

The ‘residuals’ that are unexplained by the covariates seems to exhibit the same
characteristics as for the simple model - spatial variation of the latent field f is higher
for theft from the person than it is for burglary (see figure 4.8).

From this discussion it is clear that the task of choosing the right predictors is a
challenging problem. Firstly, our assumption that the log intensity of the crime counts
is a linear combination of the logged predictors might be flawed. Secondly, our model
does not cater for interactions between the predictors, which we believe is necessary
as demonstrated by the example of immigrants and the level of education above. In
our modelling approach we almost certainly omitted predictors that are significant.
And lastly, due to the possibility of almost perfect linear relationship between two
predictors, often referred to as collinearity in the linear models literature, the model
might infer coefficients with large variance. As a result, there is a set of heuristics
that have been proposed in the literature to deal with some of these issues.

4.2.3 Model selection, evaluation

It is not surprising that adding more covariates improves the fit of the model. A good
fit does not imply that the model identified the correct predictors. The model could
simply overfit the training data and does not generalise well on out-of-sample data.
A common approach to testing generality of the model by assessing out-of-sample
predictive accuracy is cross-validation. However, in some cases this approach is not
feasible as it requires many model fits which is an issue for models estimated using
MCMC.



40 Chapter 4. Results and discussion

5 0

Intercept

0.6 0.8 1.0

Density [per ha]

4 2

Median age

0.0 0.5 1.0

Median HH income

0.0 0.5

% Unemployed

0.0 0.5

Median House Price

1 0

% Immigrants

0.0 0.5 1.0

% L4+ education

burglary theft-from-the-person

Figure 4.7: Posterior of the coefficient values, p(β|y).
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Figure 4.8: Posterior of the hyper-parameters, p(θ|y).

Method
Burglary Theft from the person

RMSE WAIC RMSE WAIC

Non-parametric 5.312 17626.425 3.581 10470.633
Model 1 4.979 16906.597 3.564 10374.831
Model 2 4.963 16864.143 3.553 10296.501

Table 4.2: Evaluation of the models fit using MCMC.

A common technique that assesses within-sample predictive accuracy but discounts
the complexity of the model is WAIC, which is described in section 3.2.1. In contrast
with cross-validation, this approach only requires one fit per model. Table 4.2 shows
both the RMSE and the WAIC information criterion for all the models that we fit-
ted using MCMC: non-parametric model, population density-based model (Model 1),
and a richer model that includes other socio-economic covariates (Model 2). As ex-
pected, adding population density into the model improved the fit which is measured
by RMSE. Predictive performance for which WAIC is an estimate suggests a 4.1%
improvement for burglary, and only a 1% improvement for theft from the person. The
addition of other covariates has resulted in an improvement to both RMSE and WAIC
metrics, but the improvements were only marginal: 0.2% for burglary and 0.7% for
theft from the person.

Although these results seem disappointing, the two semi-parametric models we
presented were just an example of how this framework can be used to test different
models and their predictive power as a measure of how well the model represents the
true process that generates crime occurrences in space. More expert knowledge on
criminology can be used to propose models that can be fitted and tested using this
framework.

Another approach to variable selection in regression problems is lasso (Friedman,
Hastie, and Tibshirani, 2001). Without going into details, the method can shrink the
coefficients of predictors towards zero by imposing penalty on their size. An equivalent
of this approach in the Bayesian setting is placing strong priors centred around zero,
such as Laplace prior, on the coefficients (Gelman, 2014, ch. 14). We suggest this as
an area of future work.
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5 Conclusion and further work

5.1 Evaluation

Modelling social phenomena such as crime is a challenging problem. Our treatment of
crime as an environmentally-driven process was motivated by the criminology theories
that stress external social factors as the main source of criminal behaviour. Such pro-
cesses naturally fit with the Cox process models. Our formulation of the Cox process
includes a deterministic, linear component and a latent noise function with a Gaussian
Process prior. While linear component enabled us to add explanatory power to the
model, the latent noise function interpolates the unexplained residuals. By applying
Bayesian framework, we compared Laplace approximation (LA) and Markov Chain
Monte Carlo sampling (MCMC) methods to overcome the problem of intractability
of the posterior distribution of the unknown quantities of interest. By assuming grid
structure of the domain we were able to utilize Kronecker methods in making our
inference method scalable.

Applying the methodology above to London crime data for burglary and theft from
the person from 2016, we have shown that fully-Bayesian inference using MCMC of
the posterior distribution for the quantities of interest resulted in better predictive
performance than approximate Bayesian inference with fixed hyper-parameters us-
ing Laplace approximation. The predictive performance, as measured by Watanabe-
Akaike information criterion (WAIC), has improved by 11% for the model of burglary
and 15% for the model of theft from the person.

Subsequently, by adding socio-economic covariates to the LGCP model and using
MCMC inference, we have managed to reduce the variance of model’s predictions.
While the increase in predictive performance of the two richer models we proposed
was not as significant as for MCMC vs LA comparison, this framework allows for
a systematic testing of models using WAIC criterion, which combined with expert
knowledge can be used to build more sophisticated models with better explanatory
power and predictive performance. We leave the question of model selection open and
discuss other potential improvements in section 5.3.

5.2 Contribution

Putting this work into the context of current literature, we have improved upon the
semi-parametric approach proposed by Marchant et al. (2018). Firstly, our approach
uses the Poisson observation model as opposed to the Gaussian likelihood. We believe
that the Poisson likelihood, although resulting in analytically intractable inference
methods, is a better representation of reality, especially at locations with very low
crime rate. By borrowing the idea of Kronecker methods from Flaxman et al. (2015)
and assuming the grid structure of our domain, our methods scale to much finer spatial
resolution which allows more accurate inferences to be made.
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5.3 Limitations and further work

As we have shown in the results (chapter 4), our method in its current form has a
number of limitations. Although we attempted to appeal to criminology to propose
plausible models, the richer models did not bring improvements we expected. By
specifying the same parametric form for both of the crime types we considered, and by
not including any interactions between covariates, we ignored particular characteristics
that each crime type exhibits. In future, with the help of expert knowledge, models
which are more representative of reality could be specified. These suggestions together
with employing shrinkage methods could be used to specify a set of explanatory models
whose predictive performance can be tested by the already implemented framework
that utilises WAIC.

This work only considers the spatial dimension of criminal activity and ignores
time. As indicated by papers that focus on crime forecasting (Taddy, 2010; Flaxman
et al., 2015), the temporal dimension could offer valuable insights into understanding
the drivers of crime.

Lastly, due to limited scope, this work does not benchmark its performance against
the state of the art frameworks such as INLA (Rue et al., 2017). As the first suggestion,
we suggest applying the INLA framework to our dataset compare the two approaches.
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A Linear algebra and probability
results

A.1 Matrix identities

Matrix inversion lemma, also known as Woodbury identity states that(
Z +UWV >

)−1
= Z−1 −Z−1U

(
W−1 + V >Z−1U

)−1
V >Z−1, (A.1)

where Z is n × n, W is m × m, and U and V are of size n × m (Rasmussen and
Williams, 2006).

A.2 Gaussian distribution

A random vector x of size D that follows multivariate Gaussian distribution has a
joint probability density given by

p(x|µ,Σ) = (2π)−D/2 det(Σ)−1/2 exp(−1

2
(x− µ)>Σ−1(x− µ)), (A.2)

where µ is the mean vector and Σ is the D ×D covariance matrix.
Let x and y be jointly Gaussian random vectors[

x

y

]
∼ N

([
µx

µy

]
,

[
A C

C> B

])
,

then the conditional distribution of x given y is

x|y ∼ N
(
µx + CB−1(y − µy), A− CB−1C>

)
. (A.3)

See Rasmussen and Williams (2006, sec A.2) for more details.
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B Dataset

B.1 Crime types

Crime type Description

Anti-social behaviour Includes personal, environmental and nuisance anti-social
behaviour.

Bicycle theft Includes the taking without consent or theft of a pedal
cycle.

Burglary Includes offences where a person enters a house or other
building with the intention of stealing.

Criminal damage and
arson

Includes damage to buildings and vehicles and deliberate
damage by fire.

Drugs Includes offences related to possession, supply and
production.

Other crime Includes forgery, perjury and other miscellaneous crime.

Other theft Includes theft by an employee, blackmail and making off
without payment.

Possession of weapons Includes possession of a weapon, such as a firearm or knife.
Public disorder and
weapons

Includes offences which cause fear, alarm, distress or a
possession of a weapon such as a firearm.

Public order Includes offences which cause fear, alarm or distress.

Robbery Includes offences where a person uses force or threat of
force to steal.

Shoplifting Includes theft from shops or stalls.

Theft from the person
Includes crimes that involve theft directly from the victim
(including handbag, wallet, cash, mobile phones) but
without the use or threat of physical force.

Vehicle crime Includes theft from or of a vehicle or interference with a
vehicle.

Violence and sexual
offences

Includes offences against the person such as common
assaults, Grievous Bodily Harm and sexual offences.

Table B.1: Crime type categories defined by UK Police
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C Derivations

C.1 Laplace approximation derivations

C.1.1 Newton step derivations

Full derivation of equation 3.21:

fnew = f − (∇∇fΨ(f))−1∇fΨ(f)

= f +
(
K−1 +W

)−1 [∇ log p(y|f)−K−1f
]

= f + [K −KQK]
[
∇ log p(y|f)−K−1f

]
(using equation A.1)

= K∇ log p(y|f)−KQK∇ log p(y|f) +KQf

= K
(
∇ log p(y|f)−QK∇ log p(y|f) +QW−1W f

)
= K

(
∇ log p(y|f)−QK∇ log p(y|f) +Q(K +W−1 −K)W f

)
= K

(
∇ log p(y|f)−QK∇ log p(y|f) +Q(K +W−1 −K)W f

)
= K

(
∇ log p(y|f)−QK∇ log p(y|f) +Q(Q−1 −K)W f

)
= K (∇ log p(y|f)−QK∇ log p(y|f) + (I −QK)W f)

= K (∇ log p(y|f)−QK∇ log p(y|f) +W (f − µ)−QKW f)

= K (∇ log p(y|f) +W f −QK (∇ log p(y|f) +W f))

= K (b−QKb) ,

where
b = ∇ log p(y|f) +W f ,

B = I +W
1
2KW

1
2 ,

Q = (K +W−1)−1 = W
1
2B−1W

1
2 .

C.1.2 Marginal likelihood computation

Full derivation of equation 3.24:

log p(y|θ)
const
= log p(f̂ |y) +

1

2
log
∣∣(2π(W +K−1)−1

∣∣
= log p(y|f̂)− 1

2
log |2πK| − 1

2
f̂>K−1f̂ +

1

2
log
∣∣2π(W +K−1)−1

∣∣
= log p(y|f̂)− 1

2
log |2πK| − 1

2
f̂>K−1f̂ − 1

2
log
∣∣2πK−1∣∣ |I +KW |

= log p(y|f̂)− 1

2
f̂>K−1f̂ − 1

2
log |I +KW |

(C.1)
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C.2 Markov-Chain Monte Carlo derivations

Expression for the log-posterior distribution. Taking the posterior from equation 3.27
and applying log gives:

log p(f ,β,θ|y) = log p(y|f ,β) + log p(f |θ) + log p(θ) + log p(β) + const1

=

[∑
i

log p(yi|fi,β)

]
+

[
−1

2
log |K| − 1

2
f>K−1f

]
+

[
−1

2
θ>Σ−1θ θ

]
+

[
−1

2
β>Σ−1β β

]
+ const2

=

[∑
i

log
exp(Z>i· β + fi)yie− exp(Z>i· β+fi)

yi!

]
+

[
−1

2
log |K| − 1

2
f>K−1f

]
+

[
−1

2
θ>Σ−1θ θ

]
+

[
−1

2
β>Σ−1β β

]
+ const2

=

[∑
i

yi(Z
>
i· β + fi)− exp(Z>i· β + fi)

]
+

[
−1

2
log |K| − 1

2
f>K−1f

]
+

[
−1

2
θ>Σ−1θ θ

]
+

[
−1

2
β>Σ−1β β

]
+ const3

=
[
y>Zβ + y>f − exp(Zβ + f)

]
+

[
−1

2
log |K| − 1

2
f>K−1f

]
+

[
−1

2
θ>Σ−1θ θ

]
+

[
−1

2
β>Σ−1β β

]
+ const3

C.2.1 Gradients

Taking the derivative of the log-posterior with respect to the quantities of interest
gives:

∇f log p(f ,β,θ|y) = ∇f log p(y|f ,β) +∇f log p(f |θ)

= [y − exp(Zβ + f)] +
[
−K−1f

] (C.2)

∇β log p(f ,β,θ|y) = ∇β log p(y|f ,β) +∇β log p(β)

=
[
Z>y −Z> exp(Zβ + f)

]
+
[
−Σ−1β β

] (C.3)

∇θi log p(f ,β,θ|y) = ∇θi log p(f |θ) +∇θi log p(θ)

=

[
1

2
f>K−1

∂K

∂θi
K−1f − 1

2
tr

(
K−1

∂K

∂θi

)]
+
[
−(Σ−1θ θ)i

]
,

(C.4)
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where

tr

(
K−1

∂K

∂θi

)
= tr

( D⊗
d=1

K−1d

) D∑
d=1

∂Kd

∂θi
⊗

⊗
j 6=d

Kj


=

D∑
d=1

tr

(
K−1d

∂Kd

∂θi

)∏
j 6=d

tr
(
K−1j Kj

)
(C.5)

using

∂K

∂θi
=

D∑
d=1

∂Kd

∂θi
⊗

⊗
j 6=d

Kj

 . (C.6)

Matérn gradients

We start with the Matérn covariance function parameterised by lengthscale `:

kν=5/2(r) =

(
1 +

√
5r

`
+

5r2

3`2

)
exp

(
−
√

5r

`

)
However, in order to avoid positivity constraint when doing inference, we let the
` = exp(φ`) and the covariance function becomes

kν=5/2(r) =

(
1 +

√
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For the purposes of HMC, the derivative with respect to φ` is equal to:
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D Additional plots
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Figure D.1: Hyper-parameter estimation, (Left) LA, and
(Right) MCMC. Dataset: London theft from the person 2016.
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Figure D.2: Inference of the posterior of the latent function, p(f |y),in
a non-parametric setting for theft from the person 2016.
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Figure D.3: Traceplots for MCMC inference of a fully-Bayesian semi-
parametric model of burglary
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