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Project Bluebird: Modernising UK airspace

– Deliver the first AI system to work with air traffic 
controllers and control a section of airspace in 
live trials.


– Increase the throughput, and help the UK 
aviation industry achieve net zero carbon 
emissions.


– The fundamental block of the project is a high-
fidelity probabilistic Digital Twin.



Digital Twin of UK Airspace

- A digital model of the airspace allows 
for:

- Better understanding of the 

physical system.

- Testing what-if scenarios — 

particularly useful for testing the 
increase in throughput.



Trajectory Prediction

- Trajectory prediction for a given clearance/
instruction is the fundamental component of 
the digital twin.


- Several sources of uncertainty:

- Unknown mass

- Unknown controller intent

- Pilot intent/airline procedures

- Meteorological conditions



Wind
– A result of pressure 

gradient force and  Coriolis 
force.


– Flow is almost completely 
horizontal.


– Impacts comfort/safety, time 
schedules, fuel consumption.


– Necessary for high-fidelity 
simulations of trajectories.

No-wind simulation

Modelled-wind simulation



Objective

– Incorporate a representation of wind into the 
Digital Twin.


– Leverage different sources of information: combine 
wind forecasts from weather agencies and the 
measurements of wind from airborne aircraft.


– Note: we are not looking to capture gusts that last 
a few seconds.



Wind: bivariate field
– The airspace is a 3D domain.

– Discretise airspace spatially 

(latitude, longitude) and 
vertically (pressure levels).


– The wind at each of the 
discretisation points is 
represented by vector 
components .u, v



Wind Measurements
– Compute true airspeed (TAS) vector 

from indicated airspeed, heading, 
and flight level (necessary for 
converting indicated airspeed to true 
airspeed).


– The ground velocity vector given by 
ground speed and the track angle.


– Wind vector simply follows as 



– We discard measurements from 
manoeuvring aircraft (climbing, turning) 
and with more than 45deg crosswind.

⃗vwind = ⃗vground − ⃗vTAS



Data Assimilation

– Weather forecasts from NOAA* are issued every 6 hours for times 
in the future at 6-hour multiples.


– In between, we can derive measurements of wind velocity from 
airborne aircraft.


– Combine wind forecasts from wind measurements from the 
aircraft in an online manner → filtering problem.


– Extensive literature on this subject: Kalman Filters.


*could be other agencies, e.g., MET Office.



Filtering Formulation




-  is the state transition operator, 


-  is the state transition innovation term, a random field,


-  is the observation operator mapping from state to observations at step ,


-  is the measurement noise,


-  is the covariance matrix for the innovation term,


-  is the covariance matrix for the measurement noise (assumed diagonal).

ψk = Mkψk−1 + wk, wk ∼ 𝒩n (0, Qk),

yk = Hkψk + vk, vk ∼ 𝒩mk (0, Rk),
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State Update
- Without the knowledge of the physical process (requiring a 

climate model), we leverage the forecasts for the time before 
step  ( ), and after step  ( ), and interpolate them 
to obtain the expected wind at step , based on the forecasts:

.


- This approach guides the state update, with weight  
determining the influence of the previous state, and the 
expected state based on forecasts.


k T0 k T0 + 6
k

ψk = w × ψk−1 + (1 − w) × f(k, ψ*prev, ψ*next)+wk

w

T0 T0+6H

Example : linear interpolation.f ( ⋅ )

ψ*prev ψ*next



State Update continued
- Covariance matrix  is a covariance matrix generated using separable 

covariance function .


- This allows for Kronecker factorisation: 


- Linear algebra cost significantly reduced, e.g., Cholesky factorisation cost goes 
down from  to .

Qk
k([x1, y1, z1], [x2, y2, z2]) = kxy([x1, y1], [x2, y2])kz(z1, z2)

Qk = Kxy ⊗ Kz

𝒪(n3) 𝒪(n3/2)



Implementation

– Due to high dimensionality of the state space, we employ Ensemble 
Kalman filter → the distribution at step  is given by an ensemble of 
members.


– Efficient Maximum Likelihood estimation of the parameters of the filter: 
lateral and vertical length scales of innovation term, and its amplitude.


– Auto-differentiation in JAX to find optimal parameters for the filtering 
scheme.


– Assuming separable covariance structure → efficient factorisation using 
Kronecker product.

k



Experiments

Density of radar blips in a 6H window in SE England



Wind Field Updates

𝔼[ψk−1]

𝔼[ψk]

𝔼[ψk] − 𝔼[ψk−1]



Evaluation

- Ground truth of wind is sparse:

- Reanalysis data from weather agencies comes at hourly 

resolution and is averaged.

- Radiosonde weather balloon measurements are sparse 

spatially.

- End-to-end validation with a simulator and comparing 

against the radar: we simulate real-life instructions from the 
controllers and compare to the radar data.



End-to-end Simulation: route-following

Using filtered wind reduced the along-the track distance error, compared 
to the wind given by interpolating two forecasts (which are 6hr apart).

Fig: Trajectories and the corresponding error: no-wind (orange), interpolated wind (purple), filtered wind (red)



End-to-end Simulation: on-heading aircraft

- The error gets more pronounced for on-heading aircraft.

- Filtering reduces along-the-track error.

Fig: Trajectories and the corresponding error: no-wind (orange), interpolated wind (purple), filtered wind (red)



End-to-end Simulation: a bad case

Fig: Trajectories and the corresponding error: no-wind (orange), interpolated wind (purple), filtered wind (red)



End-to-end Simulation: short segment

No-wind simulation

Error: forecast interpolation (purple), filtered wind 
(red), no-wind (orange)

Filtered-wind simulation



State update sensitivity

Fig: along-the-track error: no-wind (orange), interpolated wind (purple), filtered wind (red)

w = 0.5 w = 0.75



Conclusions

- Not including wind conditions in the digital twin can result in up to 10nm in along-the-track 
distance for a 20-min flight.


- Filtering methods are a natural choice for assimilating wind measurements from the 
aircraft.


- Using random fields allows for enforcing the smooth changes in wind velocity.

- The state transition step leverages forecasts to guide the filtering distribution.

- By assuming separability of the horizontal dimension from the vertical dimension in the 

innovation term, this method scales up to 1000’s of discretisation points.

- Hard to verify usefulness of the algorithm as ground truth data measurements are sparse.

- We have employed end-to-end simulation replicating aircraft trajectories and compared to 

radar data, with promising results.



Next steps

- A suite of experiments covering more aircraft.

- Assessing the covariance separability 

assumption.

- Assessing the stationarity assumption of the 

covariance function (the covariance is only 
dependent on distances, rather than locations).



Thank you!

Questions?


