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Project Bluebird: Modernising UK airspace

— Deliver the first Al system to work with air traffic
controllers and control a section of airspace in
live trials.

— Increase the throughput, and help the UK
aviation industry achieve net zero carbon
emissions.

— The fundamental block of the project is a high-
fidelity probabilistic Digital Twin.



Digital Twin of UK Airspace

- A digital model of the airspace allows
for:

- Better understanding of the
physical system.

- Testing what-if scenarios —
particularly useful for testing the
Increase in throughput.




Trajectory Prediction

- Trajectory prediction for a given clearance/
instruction is the fundamental component of
the digital twin.

- Several sources of uncertainty:

- Unknown mass

- Unknown controller intent

- Pilot intent/airline procedures
- Meteorological conditions
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Wlnd No-wind simulation ° ‘

— Aresult of pressure
gradient force and Coriolis
force.

— Flow is almost completely
horizontal.

— Impacts comfort/safety, time
schedules, fuel consumption.

— Necessary for high-fidelity
simulations of trajectories.

Modelled-wind simulation




Obijective

— Incorporate a representation of wind into the
Digital Twin.

— Leverage different sources of information: combine
wind forecasts from weather agencies and the
measurements of wind from airborne aircraft.

— Note: we are not looking to capture gusts that last
a few seconds.



Wind: bivariate field

— The airspace is a 3D domain.

— Discretise airspace spatially
(latitude, longitude) and
vertically (pressure levels).

— The wind at each of the
discretisation points is
represented by vector

components u, v.
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Wind Measurements

— Compute true airspeed (TAS) vector
from indicated airspeed, heading,
and flight level (necessary for
converting indicated airspeed to true
airspeed).

— The ground velocity vector given by
ground speed and the track angle.

— Wind vector simply follows as

Ywind = Yground ~— VTAS

— We discard measurements from
manoeuvring aircraft (climbing, turning)
and with more than 45deg crosswind.

Uswind




Data Assimilation

— Weather forecasts from NOAA™ are issued every 6 hours for times
in the future at 6-hour muiltiples.

— In between, we can derive measurements of wind velocity from
airborne aircraft.

— Combine wind forecasts from wind measurements from the
aircraft in an online manner — filtering problem.
— Extensive literature on this subject: Kalman Filters.

*could be other agencies, e.g., MET Office.



Filtering Formulation

W, =My +w, w,~ N, (0, Qk),
Y. = Hyyy + vy, Vi ~ /mG (0, Rk),

- M, is the state transition operator,

- W, is the state transition innovation term, a random field,

- H, is the observation operator mapping from state to observations at step &,
- v, is the measurement noise,

- Qk is the covariance matrix for the innovation term,

- R, is the covariance matrix for the measurement noise (assumed diagonal).



State Update

Without the knowledge of the physical process (requiring a
climate model), we leverage the forecasts for the time before

step k (T0), and after step k (70 + 6), and interpolate them
to obtain the expected wind at step k, based on the forecasts:

wk =W X ]I/k—l + (1 — W) Xf<k7 lllgreva lll* )+wk

next

This approach guides the state update, with weight w
determining the influence of the previous state, and the
expected state based on forecasts.
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Example /(- ): linear interpolation.



State Update continued

- Covariance matrix (, is a covariance matrix generated using separable
covariance function k([xl, V1> 211 [%95 V9, zz]) = kxy<[x1, i1, [%5, yz])kz(zl, zz) :

- This allows for Kronecker factorisation: Oy = K, ® K,

- Linear algebra cost significantly reduced, e.g., Cholesky factorisation cost goes
down from O(n°) to O(n*?).



Implementation

— Due to high dimensionality of the state space, we employ Ensemble
Kalman filter — the distribution at step k is given by an ensemble of

members.
— Efficient Maximum Likelihood estimation of the parameters of the filter:
lateral and vertical length scales of innovation term, and its amplitude.
— Auto-differentiation in JAX to find optimal parameters for the filtering
scheme.

— Assuming separable covariance structure — efficient factorisation using
Kronecker product.



Experiments

Density of radar blips in a 6H window in SE England



Wind Field Updates

Pressure level 250 hPa Pressure level 300 hPa Pressure level 350 hPa

Pressure level 200 hPa
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Evaluation

- Ground truth of wind is sparse:

- Reanalysis data from weather agencies comes at hourly
resolution and is averaged.

- Radiosonde weather balloon measurements are sparse
spatially.
- End-to-end validation with a simulator and comparing

against the radar: we simulate real-life instructions from the
controllers and compare to the radar data.



End-to-end Simulation: route-following
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Fig: Trajectories and the corresponding error: no-wind ( ), interpolated wind ( ), filtered wind (red)

Using filtered wind reduced the along-the track distance error, compared
to the wind given by interpolating two forecasts (which are 6hr apart).



End-to-end Simulation: on-heading aircraft
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Fig: Trajectories and the corresponding error: no-wind ( ), interpolated wind ( ), filtered wind (red)

- The error gets more pronounced for on-heading aircraft.
- Filtering reduces along-the-track error.



End-to-end Simulation: a bad case
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Fig: Trajectories and the corresponding error: no-wind ( ), interpolated wind ( ), filtered wind (red)



End-to-end Simulation: short segment
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State update sensitivity
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Conclusions

- Not including wind conditions in the digital twin can result in up to 10nm in along-the-track
distance for a 20-min flight.

- Filtering methods are a natural choice for assimilating wind measurements from the
aircraft.

- Using random fields allows for enforcing the smooth changes in wind velocity.
- The state transition step leverages forecasts to guide the filtering distribution.

- By assuming separability of the horizontal dimension from the vertical dimension in the
innovation term, this method scales up to 1000’s of discretisation points.

- Hard to verify usefulness of the algorithm as ground truth data measurements are sparse.

- We have employed end-to-end simulation replicating aircraft trajectories and compared to
radar data, with promising results.



Next steps

- A suite of experiments covering more aircraft.

- Assessing the covariance separability
assumption.
- Assessing the stationarity assumption of the

covariance function (the covariance is only
dependent on distances, rather than locations).



Thank you!

Questions?



