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Partial Differential Equations

I Widely used in science and engineering.
I PDEs provide a mechanistic and interpretable way of specifying the

relationship between different quantities.
I The partial derivatives encode how a quantity changes as we ‘move’

through the domain.
I Examples: fluid dynamics, elasticity of materials, heat systems,

electrostatics, steady-state flow of groundwater through an aquifer.
I Thanks to advances in sensing, in-situ measurements have become

widely available. How do we use it to improve our models?
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Real-life Example
Febrianto, Butler, Girolami & Cirak (2021)

A railway bridge in Staffordshire which has been instrumented with fibre
optic sensors (top left), its digital twin (top right), sample sensor
measurements (bottom):
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Using the Model and the Data

1. Using the model to answer ‘what if’ scenarios: How would the
system behave under different conditions?

2. Using the measurements of the state of the system to infer the
system’s properties.

The latter problem is termed the inverse problem.
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The Rest of the Talk

1. Bayesian Inverse problem formulation.
2. Variational Bayes as an alternative to Markov Chain Monte Carlo

methods.
3. Leveraging problem structure to specify the approximating family of

distributions.
4. Results on an elliptic PDE.
5. Bimodal example.
6. Conclusion.
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General Model (Stuart 2010)

I Given Banach spaces K,Y2, for y ∈ Y, κ ∈ K we posit

y = G(κ) + η, (1)

where G : K → Y, η ∈ Y is additive observational noise.
I For a suitable Hilbert space U , let A : K → U be a possibly

non-linear solution operator of a PDE. For a particular κ ∈ K, the
solution u ∈ U is

u = A(κ). (2)

I To obtain observation y, we define a projection operator P : U → Y.
Consequently, (1) can be written out in full as

y = P(A(κ)) + η. (3)

I Objective: want to find κ ∈ K, the parameter to a model, given
y ∈ Y, a noisy observation of the solution of a PDE.

2Respective norms for Banach spaces K, Y are ‖ · ‖K and ‖ · ‖Y .
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Example – Poisson Equation

Given forcing f , log-diffusivity κ, and appropriate boundary conditions,
we have:

−∇ · (exp(κ(x))∇u(x)) = f(x), (4)
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Inverse Problem: Finding κ

I General approach: finding κ such that the data misfit, ‖y − G(κ)‖Y ,
is minimised.

I This is an ill-posed problem: there may be no solution, it may not
be unique, and it may depend sensitively on y.

I Assumptions about κ are implemented via some form of
regularisation. Bayesian approach:
1. Describe our prior knowledge about κ in terms of a prior probability

measure µ0 on the subspace of K.
2. Use Bayes’ formula to calculate the posterior probability measure,

µy, for κ given y.
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Bayesian Inference I

I The relationship between the posterior and prior is expressed as

dµy

dµ0
(κ) =

1

Z(y)
exp(−Φ(κ; y)), (5)

where dµy

dµ0
is the Radon-Nikodym derivative of µy with respect to

µ0, and Φ is the potential function which is determined by G and η.
Z(y) =

∫
K exp(−Φ(κ; y))dµ0(κ).

I From here on, we assume that (Y, ‖ · ‖Y) = (Rny , ‖ · ‖), and we
treat y and η as vectors, i.e. y and η. We specify the additive noise
vector η as Gaussian white noise with standard deviation σy. We
can write Φ conveniently as

Φ(κ;y) =
1

2
‖G(κ)− y‖2

Γ− 1
2
, (6)

where Γ = σ2
yI, and ‖ · ‖Γ is the norm induced by the weighted inner

product.
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Bayesian Inference II

I Restrict the space of solutions K to be a Hilbert space and place a
Gaussian prior measure on κ with mean m and covariance operator
Cκ such that

µ0(κ) ∼ N (m, Cκ). (7)

I To proceed with inference, we have two options:
1. Derive an inference scheme first, discretise afterwards
2. Disretise first, derive an inference afterwards.
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Inference in Infinite-dimensional Space

I Devise an inference scheme in the function space before discretising.
I Pre-conditioned Crank-Nicholson Markov Chain Monte Carlo (pCN)

is a widely used algorithm (Cotter et al. 2013, Pinski et al. 2015).
I Recently, MCMC methods that leverage the geometry of the

posterior have been proposed (Beskos et al. 2017).
I Early developments for variational Bayes in function space

include: Minh (2017), Burt et al. (2021).

Bayesian Inverse Problem 11



Discretise-first Approach

I Disretise the problem before deriving an inference scheme.
I Many widely used methods fall under this approach:

– Metropolis-Hastings (Metropolis et al. 1953, Hastings 1970)
– Hamiltonian Monte Carlo (HMC) (Duane et al. 1987),
– Laplace approximation,
– Variational Bayes (Jordan et al. 1998, 1999).

I This leads to the more familiar formulation of the Bayes’ theorem:

p(κ | y) =
p(y | κ) p(κ)

p(y)
∝ p(y | κ) p(κ), (8)

where p(κ | y) is the posterior density, p(y | κ) is the likelihood of
the observed data y for a given discretised κ.
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Likelihood – Back to the Poisson Problem I

I We consider a specific problem – the Poisson problem:

−∇ · (exp(κ(x))∇u(x)) = f(x), (9)

where x ∈ Ω ⊂ Rd, with d ∈ {1, 2, 3}, κ(x) ∈ R is the log-diffusion
coefficient, u(x) ∈ R is the unknown, and f(x) ∈ R is a
deterministic forcing term.

I Disretise the weak form of the problem with a standard finite
element approach of non-overlapping elements {ωe}ne

e=1 and using
Lagrange basis functions φ(x).
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Likelihood – Back to the Poisson Problem II

I The solution u is then expressed using coefficients {ui}nu
i=1as

uh(x) =

nu∑
i=1

φi(x)ui . (10)

I Proceeding further, we obtain a linear system:

A(κ)u = f , (11)

where A(κ) ∈ Rnu×nu is the stiffness matrix, κ ∈ Rnκ is the vector
of log-diffusion coefficients, f ∈ Rnu is the nodal source vector.

I The stiffness matrix of an element with label e is given by

Aeij(κe) =

∫
ωe

exp(κe)
∂φi(x)

∂x
· ∂φj(x)

∂x
dx , (12)

where the log-diffusion coefficient κe of the element is assumed to
be constant within the element.
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Likelihood – Back to the Poisson Problem III

I The source vector is discretised as:

fi =

∫
Ω

f(x)φi(x)dx . (13)

I Finally, the likelihood is given by

p(y | κ) = p(y | u(κ)) = N (PA(κ)−1f , σ2
yI) , (14)

where the matrix P represents the discretisation of the observation
operator P.
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Prior

I Placing a zero-mean Gaussian Process prior on κ gives

κ ∼ GP
(
0, kSE(·, ·)

)
. (15)

I Discretise κ by assuming κ(x) is constant on each element of the
mesh. Centroids of the finite elements are the training points of the
GP, giving:

p(κ) = N (0,Kψ(X,X)). (16)

I Parameters ψ are covariance function parameters such as
length-scale and amplitude.
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Stochastic Variational Bayes

We posit a family of distributions Dq from which we choose the
minimiser of the Kullback-Leibler divergence:

q∗(κ) = arg min
q(κ)∈Dq

KL(q(κ) ‖ p(κ | y)) (17)

which is equivalent to maximising the evidence lower bound (ELBO):

q∗(κ) = arg max
q(κ)∈Dq

Eq
[

log p(y | κ)
]
−KL(q(κ) ‖ p(κ)). (18)

Generally, Eq
[

log p(y | κ)
]
is not available in closed form. Instead, we

use a Monte Carlo approximation with NSVI samples from q(κ) as follows

Eq
[

log p(y | κ)
]
≈ N−1

SVI

NSVI∑
i=1

log p(y | κ(i)), (19)

where κ(i) is the i-th sample from q(κ).
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Choice of Variational Family

I The choice of the approximating family of distributions determines
how much structure of the true posterior distribution is captured by
the variational approximation.

I The family of Gaussian distributions is a convenient choice (the KL
term of the ELBO is available in closed form for GP priors).

I Other options:
– Mixture of variational densities to cater for multi-modal

posteriors (Bishop et al. 1998).
– embedding parameters of a mean-field approximation in a

hierarchical model to induce variational dependencies between latent
variables (Tran et al. 2015, Ranganath et al. 2016).
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Multivariate Gaussian Parametrisations I

Different parametrisations of q(κ) for the family of multivariate Gaussian
distributions:

1. Diagonal covariance matrix, known as mean-field VB [MFVB]

q(κ) ∼ N (µ,D)

2. Fully-specified Cholesky factor. (full-covariance VB [FCVB])

q(κ) ∼ N (µ,LL>)

3. Cholesky factor of the sparse precision matrix [PMVB]

q(κ) ∼ N (µ, (LQL
>
Q)−1)
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Precision Matrices and Conditional Independence

I Specify the multivariate Gaussian through the precision matrix:
Q = Σ−1.

I The elements of the precision matrix reflect conditional
independence:

p(κi, κj | κ−{i,j}) = p(κi | κ−{i,j})p(κj | κ−{i,j}) ⇔ Qij = 0 ,
(20)

whereas for independence (of Gaussian random variables!), we
have:

p(κi, κj) = p(κi)p(κj) ⇔ Σij = 0 . (21)

I For more details, see Rue & Held (2005).
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Leveraging Sparsity 1D Example

i j k l m

(a) Labelling of the five elements.

i j k l m


i j k l m

i × ×
j × × ×
k × × ×
l × × ×
m × ×


(b) 1-neighbourhood structure

i j k l m


i j k l m

i × × ×
j × × × ×
k × × × × ×
l × × × ×
m × × ×


(c) 2-neighbourhood structure
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Leveraging Sparsity 2D Example

2D mesh
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Experiments – 1D Poisson Problem

I Objective: infer the posterior distribution of κ given measurements
of y.

I Sensors are placed on the discretisation nodes and the sensor noise is
σy = 0.01. Five readings are taken.

I Constant forcing, f(x) = 1 is assumed and we impose Dirichlet
boundary conditions as u(0) = u(1) = 0.

I Data generated by assuming κ is a sample from a unit-variance
zero-mean GP with lengthscale `κ = 0.2.
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Results – Uncertainty Estimate
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Results – Uncertainty Propagation

We assess the propagation of uncertainty using log of total boundary flux
through the left boundary:

r(κ) = log

∫
Γb

eκ(s)∇u(s) · n ds, (22)

where n is a unit vector normal to the boundary.
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Figure: Log of the boundary flux at the left boundary node (x = 0) for the 1D
Poisson example. For PMVB, the precision matrix bandwidth of 10 is used.

Examples 25



Results – Data Quality
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I Mean estimates for all methods get closer to the true κ with
improved information.

I FCVB and PMVB uncertainty estimates get narrower with increasing
number of observations and with decreasing observational noise.
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Results – Number of Samples for VB
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I Figure shows the posterior estimates for different number of Monte
Carlo samples in the estimation of ELBO,

I On a qualitative level, a small number of samples is sufficient to
obtain a good estimate.
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Results – Increasing PMVB Bandwidth
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I Increasing the order of neighbourhood improves the estimation of
uncertainty (at the cost of more parameters).
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Resuts – Computation Time

true `κ prior `κ
Time (hours)

HMC MFVB FCVB PMVB

0.1 0.1 15.2 (871–3244) 1.1 3.6 2.1
0.2 11.1 (1043–4006) 0.7 2.7 2.1
0.3 7.2 (1130–5408) 0.6 2.3 2.0

0.2 0.1 15.2 (1600–4700) 0.6 2.2 1.8
0.2 10.4 (1067–3468) 0.6 2.3 2.0
0.3 7.0 (1487–3969) 0.5 1.7 1.8

Table: Run-times in hours for the Poisson 1D problem. For VB methods,
NSVI = 3. The column for HMC includes the range of effective sample sizes
(ESS) across different components of κ.
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Experiments – 2D Poisson Problem

I Same setup as before, but now with the sensor noise σy = 0.001,
and different boundary conditions.

I Dirichlet boundary conditions u(x, y) = 0 when x = 1 or y = 1.
Neumann boundary conditions on the rest of the boundary
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2D Example – Results I

True HMC pCN MFVB FCVB PMVB

-1.000
 0.000
 1.000

SD( )
 0.100
 0.200

u( )

 0.000

 0.200

Precision
Matrix

Figure: Posterior mean and standard deviation for κ and the corresponding u
for 2D Poisson example with prior length-scale `κ = 0.1. The bottom row
shows the structure of the precision matrix for each inference scheme.
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2D Example –Computation Cost

true `κ prior `κ
Time (hours)

HMC MFVB FCVB PMVB

0.1 0.1 240.6 (930–11200) 6.4 29.6 28.1
0.2 295.5 (1537–11067) 6.6 32.6 28.9
0.3 242.0 (1057–6068) 7.3 27.3 30.6

0.2 0.1 242.7 (1102–18235) 6.2 34.3 27.2
0.2 264.3 (1304–9848) 7.4 33.7 34.0
0.3 221.9 (1192–6356) 7.8 31.3 34.0

Table: Run-times for different inference schemes in seconds. The number of
Monte Carlo samples is NSVI = 5 for all MFVB, FCVB, and PMVB. The
column for HMC includes the range of effective sample sizes (ESS) across
different components of κ.

Examples 32



Heat Example

I Metal rod with unknown conductivity properties (constant
throughout).

I A uniform heat source throughout the rod.
I Temperature on the RHS is fixed and unknown, and on the LHS is

fixed and known (BC).
I We obtain two readings of temperature in the centre of the rod.
I What can we say about heat conductivity, and the temperature on

the RHS which is fixed?
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VB Can Handle Multi-modal Posteriors
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Implementation

I FEM C++ code written by CSMLab, led by Prof Fehmi Cirak.
I Our Tensorflow (Python) code performs the inference and interfaces

with the FEM module.
I Available on Github.
I For more details, see the paper: Povala et al. (2022)
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Conclusions

I the mean of the variational posterior provides an accurate point
estimate irrespective of the choice of the parametrisation of the
covariance structure,

I VB with a full-covariance or precision matrix structure adequately
estimates posterior uncertainty compared to HMC and pCN,

I sparse precision matrix parameterisation leverages the structure of
the problem to balance computational complexity and the ability to
capture dependencies in the posterior distribution,

I VB provides a good estimate for mean and variance in a time that is
at least an order of magnitude faster than HMC or pCN,

I the VB estimates may be used effectively in downstream tasks to
estimate various quantities of interest.

Outlook:
I Leverage sparse linear algebra routines and different optimisation

schemes.
I Consider stochastic forcing.
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Results – Error
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