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Motivation
Febrianto, Butler, Girolami & Cirak (2021)

A railway bridge in Staffordshire which has been instrumented with fibre
optic sensors (top left), its digital twin (top right), sample sensor
measurements (bottom):
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Using the Model and the Data

1. Using the model to answer ‘what if’ scenarios: How would the
system behave under different conditions?

2. Using the measurements of the state of the system to infer the
system’s properties.

The latter problem is termed the inverse problem.
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The Rest of the Talk

1. Bayesian Inverse problem formulation.
2. Variational Bayes as an alternative to Markov Chain Monte Carlo

methods.
3. Leveraging problem structure for efficient inference.
4. Results on an elliptic PDE.
5. Conclusion.
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General Model (Stuart 2010)

I For a given parameter κ, the solution of a PDE model is given by a
possibly non-linear solution operator A:

u = A(κ). (1)

I We observe the solution at a finite number of points:

y = P(A(κ)) + η, (2)

where P is the projection operator and η is non-correlated noise.
I Objective: want to find κ, the parameter to a model, given y, a

noisy observation of the solution of a PDE.
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Example – Poisson Equation

Given forcing f , log-diffusivity κ, and appropriate boundary conditions,
we have:

−∇ · (exp(κ(x))∇u(x)) = f(x), (3)
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Inverse Problem: Finding κ

I General approach: finding κ such that the data misfit,
‖y − P(A(κ))‖2, is minimised.

I This is an ill-posed problem: there may be no solution, it may not
be unique, and it may depend sensitively on y.

I Assumptions about κ are implemented via some form of
regularisation. Bayesian approach:
1. Describe our prior knowledge about κ in terms of a prior probability

measure, µ0(κ).
2. Use Bayes’ formula to calculate the posterior probability measure for

κ given y, µy(κ).
I To proceed with inference, we have two options:

1. Derive an inference scheme first, discretise afterwards
2. Disretise first, derive an inference afterwards.
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Bayesian Inference

I Disretise the problem before deriving an inference scheme.
I Many widely used methods fall under this approach:

– Metropolis-Hastings (Metropolis et al. 1953, Hastings 1970)
– Hamiltonian Monte Carlo (HMC) (Duane et al. 1987),
– Laplace approximation,
– Variational Bayes (Jordan et al. 1998, 1999).

I This leads to the familiar formulation of the Bayes’ theorem:

p(κ | y) =
p(y | κ) p(κ)

p(y)
∝ p(y | κ) p(κ), (4)

where p(κ | y) is the posterior density, p(y | κ) is the likelihood of
the observed data y for a given discretised κ.
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Likelihood – Back to the Poisson Problem

I The likelihood, p(y | κ), involves solving the PDE.
I We consider a specific problem – the Poisson problem:

−∇ · (exp(κ(x))∇u(x)) = f(x), (5)

I Disretise the weak form of the problem with a standard finite
element approach to obtain a linear system:

A(κ)u = f , (6)

where A(κ) ∈ Rnu×nu is the stiffness matrix, κ ∈ Rnκ is the vector
of log-diffusion coefficients, f ∈ Rnu is the nodal source vector.

I Finally, the likelihood is given by

p(y | κ) = p(y | u(κ)) = N (PA(κ)−1f , σ2
yI) , (7)

where the matrix P represents the discretisation of the observation
operator P.
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Prior

I Place a zero-mean Gaussian Process prior on κ:

κ ∼ GP
(
0, kSE(·, ·)

)
. (8)

I Discretise κ by assuming κ(x) is constant on each element of the
mesh. Centroids of the finite elements are the training points of the
GP, giving:

p(κ) = N (0,Kψ(X,X)). (9)

I Parameters ψ are covariance function parameters such as
length-scale and amplitude.
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Stochastic Variational Bayes I

We posit a family of distributions Dq from which we choose the
minimiser of the Kullback-Leibler divergence:

q∗(κ) = arg min
q(κ)∈Dq

KL(q(κ) ‖ p(κ | y)), (10)

where KL divergence is defined as

KL(q(κ) ‖ p(κ | y)) =

∫
log

q(κ)

p(κ | y)
q(κ)dκ. (11)

The minimisation problem is equivalent to maximising the evidence lower
bound (ELBO):

q∗(κ) = arg max
q(κ)∈Dq

Eq
[

log p(y | κ)
]
−KL(q(κ) ‖ p(κ)). (12)
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Stochastic Variational Bayes II

Generally, Eq
[

log p(y | κ)
]
is not available in closed form. Instead, we

use a Monte Carlo approximation with NSVI samples from q(κ) as follows

Eq
[

log p(y | κ)
]
≈ N−1

SVI

NSVI∑
i=1

log p(y | κ(i)), (13)

where κ(i) is the i-th sample from q(κ).
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Choice of Variational Family

I The choice determines how much structure of the true posterior
distribution is captured.

I Trade-off between ‘richness’ and ‘convenience’.
Different parametrisations of q(κ) for the family of multivariate Gaussian
distributions:
1. Diagonal covariance matrix, known as mean-field VB [MFVB]

q(κ) ∼ N (µ,D)

2. Fully-specified Cholesky factor. (full-covariance VB [FCVB])

q(κ) ∼ N (µ,LL>)

3. Cholesky factor of the sparse precision matrix [PMVB]

q(κ) ∼ N (µ, (LQL
>
Q)−1)

Other than Gaussians, other options include mixtures and hierarchical
parametrisations.
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Precision Matrices and Conditional Independence

I Specify the multivariate Gaussian through the precision matrix:
Q = Σ−1.

I The elements of the precision matrix reflect conditional
independence:

p(κi, κj | κ−{i,j}) = p(κi | κ−{i,j})p(κj | κ−{i,j}) ⇔ Qij = 0 ,
(14)

whereas for independence (of Gaussian random variables!), we
have:

p(κi, κj) = p(κi)p(κj) ⇔ Σij = 0 . (15)

I For more details, see Rue & Held (2005).
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Leveraging Sparsity 1D Example

i j k l m

(a) Labelling of the five elements.

i j k l m


i j k l m

i × ×
j × × ×
k × × ×
l × × ×
m × ×


(b) 1-neighbourhood structure

i j k l m


i j k l m

i × × ×
j × × × ×
k × × × × ×
l × × × ×
m × × ×


(c) 2-neighbourhood structure
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Leveraging Sparsity 2D Example
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Experiments – 1D Poisson Problem

I Objective: infer the posterior distribution of κ given measurements
of y.

I Sensors are placed on the discretisation nodes and the sensor noise is
σy = 0.01. Five readings are taken.

I Constant forcing, f(x) = 1 is assumed and we impose Dirichlet
boundary conditions as u(0) = u(1) = 0.

I Data generated by assuming κ is a sample from a unit-variance
zero-mean GP with lengthscale `κ = 0.2.
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Results – Uncertainty Estimate
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Results – Uncertainty Propagation

We assess the propagation of uncertainty using log of total boundary flux
through the left boundary:

r(κ) = log

∫
Γb

eκ(s)∇u(s) · n ds, (16)

where n is a unit vector normal to the boundary.
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Figure: Log of the boundary flux at the left boundary node (x = 0) for the 1D
Poisson example. For PMVB, the precision matrix bandwidth of 10 is used.
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Results – Data Quality
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I Mean estimates for all methods get closer to the true κ with
improved information.

I FCVB and PMVB uncertainty estimates get narrower with increasing
number of observations and with decreasing observational noise.
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Results – Number of Samples for VB
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I Figure shows the posterior estimates for different number of Monte
Carlo samples in the estimation of ELBO,

I On a qualitative level, a small number of samples is sufficient to
obtain a good estimate.
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Results – Increasing PMVB Bandwidth
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I Increasing the order of neighbourhood improves the estimation of
uncertainty (at the cost of more parameters).
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Conclusions

I the mean of the variational posterior provides an accurate point
estimate irrespective of the choice of the parametrisation of the
covariance structure,

I VB with a full-covariance or precision matrix structure adequately
estimates posterior uncertainty compared to MCMC methods,

I sparse precision matrix parameterisation leverages the structure of
the problem to balance computational complexity and the ability to
capture dependencies in the posterior distribution,

I order of magnitude faster than MCMC methods,
I the VB estimates may be used effectively in propagating uncertainty.
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Implementation

I FEM C++ code written by CSMLab, led by Prof Fehmi Cirak.
I Our Tensorflow (Python) code performs the inference and interfaces

with the FEM module.
I Available at https://github.com/jp2011/bip-pde-vi.
I For more details, see the paper: Povala et al. (2022)
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Results – Computation Time

true `κ prior `κ
Time (hours)

HMC MFVB FCVB PMVB

0.1 0.1 15.2 (871–3244) 1.1 3.6 2.1
0.2 11.1 (1043–4006) 0.7 2.7 2.1
0.3 7.2 (1130–5408) 0.6 2.3 2.0

0.2 0.1 15.2 (1600–4700) 0.6 2.2 1.8
0.2 10.4 (1067–3468) 0.6 2.3 2.0
0.3 7.0 (1487–3969) 0.5 1.7 1.8

Table: Run-times in hours for the Poisson 1D problem. For VB methods,
NSVI = 3. The column for HMC includes the range of effective sample sizes
(ESS) across different components of κ.
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Results – Error
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Experiments – 2D Poisson Problem

I Same setup as before, but now with the sensor noise σy = 0.001,
and different boundary conditions.

I Dirichlet boundary conditions u(x, y) = 0 when x = 1 or y = 1.
Neumann boundary conditions on the rest of the boundary
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2D Example – Results I
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Figure: Posterior mean and standard deviation for κ and the corresponding u
for 2D Poisson example with prior length-scale `κ = 0.1. The bottom row
shows the structure of the precision matrix for each inference scheme.
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2D Example –Computation Cost

true `κ prior `κ
Time (hours)

HMC MFVB FCVB PMVB

0.1 0.1 240.6 (930–11200) 6.4 29.6 28.1
0.2 295.5 (1537–11067) 6.6 32.6 28.9
0.3 242.0 (1057–6068) 7.3 27.3 30.6

0.2 0.1 242.7 (1102–18235) 6.2 34.3 27.2
0.2 264.3 (1304–9848) 7.4 33.7 34.0
0.3 221.9 (1192–6356) 7.8 31.3 34.0

Table: Run-times for different inference schemes in seconds. The number of
Monte Carlo samples is NSVI = 5 for all MFVB, FCVB, and PMVB. The
column for HMC includes the range of effective sample sizes (ESS) across
different components of κ.
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