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Motivation
We are interested in modelling the intensity of the point pattern of burglaries
and using the model to provide socioeconomic insights into criminal behaviour.
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As is clear from the plots above, this data exhibits two common phenomena:

• Spatial dependence: the first law of Geography – “everything is related to
everything else, but near things are more related than distant things”(Tobler
1970)
• Spatial heterogeneity: phenomena observed on large domains tend to

exhibit location-specific dynamics.

Common approaches

• The go-to model for modelling spatial dependence of point patterns is the
log-Gaussian Cox process model (Diggle et al. 2013).
• Mixture models with allocation that enforces spatial dependence (Green &

Richardson 2002, Fernández & Green 2002, Hildeman et al. 2018).
• Regression coefficients modelled as a Gaussian process (Gelfand et al. 2003,

Banerjee et al. 2015).

The approaches suffer from limited scalability, they often focus only on one of
the two phenomena above, or provide limited interpretability.

Proposed model
We discretise the point pattern over a specific period of time into a regular
grid and model the number of crime occurrences in each cell, yn, as a Poisson
random variable whose log-intensity is a linear component that is conditioned
on the assignment to a mixture component k, with k = 1, . . . , K. Mixture
allocation for each cell is given by a categorical random variable with event
probabilities πb where b refers to the encompassing block of a cell. The blocks
span the whole study region and each block is a group of contiguous cells.

yn|zn = k,β1, . . . ,βK,Xn ∼ Poisson
(
exp
(
X>n βk

))
zn|π ∼ Cat(π1,b[n], . . . , πK,b[n])

πk,b|fk =
exp(fk,b[n])∑K
l=1 exp(fl,b[n])

fk|θk ∼ GP(0, κθk(·, ·))
θk ∼ kernel-dependent prior

βk,j|σ2k,j ∼ N (0, σ2k,j)

σ2k,j ∼ InvGamma(1, 0.01).

Experiment
To formulate the hypotheses about the linear component of the log-intensity,
we exploit the existing criminology studies on the target selection process for
burglaries. We work under the framework where the offender is maximising
the reward, minimising the risk and the effort. The predictors we consider are:
household density, POI density, residential turnover, household income, real
estate prices, transport accessibility, and other socioeconomic measures.

We aggregate the one-year point pattern from 2015 over a grid. Number of
mixture components, K, ranges from 1 to 8. For the blocking structure we use
existing census output areas (sensitivity study of this choice is in the paper).
Additionally, we make a simplifying assumption that the mixture probabilities for
each block, πb’s, are independent and distributed as Dirichlet(1/K, . . . , 1/K).
We estimate the model using a Metropolis-within-Gibbs scheme.

Performance evaluation
As the baseline for our comparison we use the log-Gaussian Cox where the log-
intensity is a Gaussian process with the mean specified by a linear model that
includes covariates discussed above. We asses the performance using the RMSE
on the one-period-ahead data. We also asssess the ability to predict hotspots
using measures which were introduced by criminologists: predictive accuracy
index (PAI) and predictive efficiency index (PEI).
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Figure 1: Proposed model ( ) vs LGCP ( ). We show the results for different
specifications of covariates : 1 ( ), 2 ( ), 3 ( ), 4 ( ).
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Figure 2: Proposed model ( ) vs LGCP ( ) with specification 4. K = 1( ),
K = 2( ), K = 3( ), K = 4( ), K = 5( ), K = 6( ), K = 7 ( ).

Interpretation of results
We show the posterior allocation of the cells to one of the K = 3 components.
For each component, we assess the importance of each covariate using the
measure that corresponds to the degradation of the fit if the covariate was
removed from the model. It is clear that clusters of residential locations (k = 1),
city centre and high street (k = 2), and non-urban areas (k = 3) have been
inferred with the importance of each covariate changing for the components.

Pposterior(zn = 1)
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IMP, component 1
intercept 0.947 (0.001) +
log households 0.887 (0.002) +
log POIs (all) 0.399 (0.022) +
accessibility 0.225 (0.024) +
log house price 0.100 (0.017) +
ethnic heterogeneity 0.083 (0.016) +
occupation variation 0.025 (0.011) +
population turnover 0.011 (0.004) +
(Semi-)detached houses 0.002 (0.002) +

Pposterior(zn = 2)
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IMP, component 2
intercept 0.955 (0.001) +
log households 0.840 (0.003) +
accessibility 0.554 (0.012) +
log POIs (all) 0.510 (0.017) +
ethnic heterogeneity 0.192 (0.017) +
occupation variation 0.098 (0.021) +
population turnover 0.032 (0.006) -
log house price 0.020 (0.011) -
(Semi-)detached houses 0.003 (0.002) +

Pposterior(zn = 3)
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IMP, component 3
log households 0.946 (0.003) -
intercept 0.906 (0.004) +
log POIs (all) 0.808 (0.015) -
occupation variation 0.719 (0.060) +
log house price 0.680 (0.027) +
accessibility 0.435 (0.086) +
ethnic heterogeneity 0.050 (0.024) +
(Semi-)detached houses 0.002 (0.007) +
population turnover 0.001 (0.007) +

Discussion
Using stationary GPs is not enough to effectively model point patterns in large
urban domains. The blocking approach can significantly reduce computation
time. One posterior sample from the proposed model is of O(N ×K) time
complexity, compared to LGCP’s O

(
N3
)

. The proposed model achieves the
performance comparable to LGCP, is interpretable, and provides useful crimino-
logical insights.
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