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Motivation
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As is clear from the plots above, this data exhibits two common phenomena:

I Spatial dependence: the first law of Geography – “everything is related to
everything else, but near things are more related than distant
things”(Tobler 1970)

I Spatial heterogeneity: phenomena observed on large domains tend to
exhibit location-specific dynamics.
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Modelling of spatial data

I The go-to model for modelling spatial dependence of point patterns is the
log-Gaussian Cox process model (Diggle et al. 2013).

I Mixture models with allocation that enforces spatial dependence (Green &
Richardson 2002, Fernández & Green 2002, Hildeman et al. 2018).

I Regression coefficients modelled as a Gaussian process (Gelfand et al. 2003,
Banerjee et al. 2015).

The approaches suffer from limited scalability, they often focus only on one of
the two phenomena above, or provide limited interpretability.
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Our proposed model

yn|zn = k,β1, . . . ,βK ,Xn ∼ Poisson
(
exp

(
X>n βk

))
zn|π ∼ Cat(π1,b[n], . . . , πK,b[n])

πk,b|fk =
exp(fk,b[n])∑K
l=1 exp(fl,b[n])

fk|θk ∼ GP(0, κθk
(·, ·))

βk,j |σ2
k,j ∼ N (0, σ2

k,j)

σ2
k,j ∼ InvGamma(1, 0.01).

yn

Xn zn πk,b fk θk

βk,j σk,j

N KJ
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London burglary experiment

I One-/three-year point pattern aggregated to a grid with cell size
400m× 400m.

I Covariates X(x) chosen based on criminological background.

I Number of mixture components, K, ranges from 1 to 8.

I The blocking structure given by census output areas (MSOA).
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Results (1 year)
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Figure: Evaluation of the performance of SAM-GLM ( ), compared to LGCP ( )
for a one-year dataset. Log-likelihood and root mean square error for the held-out data
are shown for different model specifications: specification 1 ( ), specification 2
( ), specification 3 ( ), specification 4 ( ). Blocking: MSOA, training data:
burglary 2015, test data: burglary 2016.
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Results (3 years)
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Figure: Evaluation of the performance of SAM-GLM ( ), compared to LGCP ( )
for a three-year dataset. Log-likelihood and root mean square error for the held-out
data are shown for different model specifications: specification 1 ( ), specification 2
( ), specification 3 ( ), specification 4 ( ). Blocking: MSOA, training data:
burglary 2013-2015, test data: burglary 2016-2018.
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Allocations 1

Pposterior(zn = 1)
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IMP, component 1
intercept 0.947 (0.001) +
log households 0.887 (0.002) +
log POIs (all) 0.399 (0.022) +
accessibility 0.225 (0.024) +
log house price 0.100 (0.017) +
ethnic heterogeneity 0.083 (0.016) +
occupation variation 0.025 (0.011) +
population turnover 0.011 (0.004) +
(Semi-)detached houses 0.002 (0.002) +

Kensington, Fulham, and Shepherd’s Bush (A); Hounslow, Kingston, Richmond,
and Twickenham (2); Hayes and Southall (C); Harrow and Edgware (D); East
Barnet, Enfield, Walthamstow, Wood Green (E); Barking and Dagenham (F);
Bexley (G); Orpington (H); Bromley (I); Croydon, and Purley (J); New Malden,
and Morden (K)
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Allocations 2

Pposterior(zn = 2)
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IMP, component 2
intercept 0.955 (0.001) +
log households 0.840 (0.003) +
accessibility 0.554 (0.012) +
log POIs (all) 0.510 (0.017) +
ethnic heterogeneity 0.192 (0.017) +
occupation variation 0.098 (0.021) +
population turnover 0.032 (0.006) -
log house price 0.020 (0.011) -
(Semi-)detached houses 0.003 (0.002) +

Soho, Mayfair, Covent Garden, Marylebone, Fitzrovia (L); Shoreditch and
Stratford (M); Streatham and Tooting Bec (N); Wembley, and Brent (O);
Enfield, Hampstead (P); Romford (Q); Orpington (R); Wembley, Harrow (S)
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Allocations 3

Pposterior(zn = 3)
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IMP, component 3
log households 0.946 (0.003) -
intercept 0.906 (0.004) +
log POIs (all) 0.808 (0.015) -
occupation variation 0.719 (0.060) +
log house price 0.680 (0.027) +
accessibility 0.435 (0.086) +
ethnic heterogeneity 0.050 (0.024) +
(Semi-)detached houses 0.002 (0.007) +
population turnover 0.001 (0.007) +

Hyde Park, Regent’s Park, Hampsted Heath (1), Richmod nad Bushy parks (2),
Osterley Park and Kew botanic gardens (3), Heathrow airport (4), RAF
Northolt and parks near Harrow (5), Edgware fields (6), Lee Valley (7),
industrial zone in Barking and Rainham Marshes (8), parks around Bromley and
Biggin Hill airport (9)
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Remarks

I The proposed approach allows for fast sampling and achieves performance
comparable to LGCP. One posterior sample from the proposed model is of
O(N ×K) time complexity, compared to LGCP’s O

(
N3
)
.

I The model gives insights as to which covariate is important for each
component.

I The allocation posterior is mostly determined by how well the β coefficients
explain the log intensity at a given location. The posterior estimates are
regularised by the mixture allocation prior.

I Label-switching, which hampers interpretation, is not present for K ≤ 5. It
is harder to switch modes in higher dimensions.
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Conclusions and further work

Conclusions:

I Using stationary GPs is not enough to effectively model point patterns in
large urban domains.

I The blocking approach can significantly reduce computation time.

I The proposed model is interpretable and provides useful criminological
insights.

I More details can be found in the paper Povala et al. (2020).

Further work:

I Efficient modelling of spatial dependence between the blocks.

I Non-blocking models such as Gibbs distribution for mixture allocation.
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Log-Gaussian Cox Process

I Cox process with intensity driven by a fixed component X(x)>β and a
latent function f(x):

Λ(x) = exp
(
X(x)>β + f(x)

)
,

where f(x) ∼ GP(0, kθ(·, ·)), X(x) are socio-economic covariates, and β
are their coefficients.

I Discretised version of the model:

yi ∼ Poisson
(
exp

[
X(xi)

>β + f(xi)
])
.
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Inference

We use Metropolis-within-Gibbs (Geman & Geman 1984, Metropolis et al.
1953) scheme using the following two steps:

1. We sample the regression coefficients βk,j jointly for all k = 1, . . . ,K and
j = 1, . . . , J . The unnormalised density of the conditional distribution is
given as

p(β|α,X,y, z) ∝ p(y|β,X, z)p(β). (1)

Equation 1 is sampled using Hamiltonian Monte Carlo method (Duane
et al. 1987).

2. Mixture allocation can be sampled cell by cell directly

p(zn = k|zn̄, α,Xnβ,y) ∝ p(yn|zn = k,Xnβk)
cn̄b[n]k + α

Kα+
∑K
i=1 c

n̄
b[n]k

, (2)

where cn̄b[n]k is the number of cells other than cell n in the encompassing

block b[n] assigned to component k, and zn̄ is the allocation vector with
the contribution of cell n removed.
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Evaluation

We evaluate the performance using these metrics:

I Held-out log likelihood:

Held-out log likelihood =
1

S

S∑
s=1

1

N

N∑
n=1

log p(ỹn|θs), (3)

I Root mean square error:

RMSE =
1

S

S∑
s=1

√√√√ 1

N

N∑
n=1

(y
(s)
n − ỹn)2. (4)

I Predictive accuracy index (PAI): proportion of crimes occurring in marked
hotspots divided by the proportion of the study region marked as hotspots
(Chainey et al. 2008).

I Predictive efficiency index (PEI): number of crimes predicted by the model
for a given area size divided by the maximum number of crimes for the
given area size (Hunt 2016).
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Hotspot performance metrics (1 year)

200 400

101

Number of cells marked as hotspots

PAI

200 400

10−0.2

10−0.1

Number of cells marked as hotspots

PEI

Figure: PAI/PEI performance SAM-GLM ( ) and LGCP ( ) models, using
specification 4. For the SAM-GLM results, the colour of the line represents the number
of components: K = 1( ), K = 2( ), K = 3( ), K = 4( ), K = 5( ),
K = 6( ), K = 7 ( ). Training data: burglary 2015, test data: burglary 2016.
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Hotspot performance metrics (3 years)
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Figure: PAI/PEI performance SAM-GLM ( ) and LGCP ( ) models, using
specification 4. For the SAM-GLM results, the colour of the line represents the
number of components: K = 1( ), K = 2( ), K = 3( ), K = 4( ),
K = 5( ), K = 6( ), K = 7 ( ). Training data: burglary 2013-2015, test
data: burglary 2016-2018.Appendix 20



Block size sensitivity (1 year)
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Figure: Log-likelihood and root mean square error for the held-out data for different
block sizes: MSOA( ), LAD( ), single block( ). The error bars represent the
standard deviation obtained from the respective MCMC samples. Training data: 2015,
test data: 2016, model specification 4
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Block size sensitivity (3 years)
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Figure: Log-likelihood and root mean square error for the held-out data for different
block sizes: MSOA( ), LAD( ), single block( ). The error bars represent the
standard deviation obtained from the respective MCMC samples. Training data:
2013-2015, test data: 2016-2018, model specification 4
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Interpretation of results

To effectively compare the effects of a covariate across different mixture
components, we consider a covariate importance measure, defined as

IMPkj = 1−
∑
n I (zn = k)(yn − ŷnβ̃)2∑
n I (zn = k)(yn − ŷnβ̄j )2

, (5)
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