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Motivation

I Model the occurrences of burglary as a spatial point pattern and
provide short-term forecasts.

I Provide insights into the intensity of the process.
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Two pillars of spatial statistics

To avoid biased results and faulty inferences a reasonable spatial model
needs to account for:

I Spatial dependence: the first law of Geography – “everything is
related to everything else, but near things are more related than
distant things”(Tobler 1970)

I Spatial heterogeneity: phenomena observed on large domains tend
exhibit location-specific dynamics.
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The data I
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Figure: Intensity of burglary occurrences in London during the year 2015
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The data II
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Figure: Histogram of the location counts of burglary in London
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Cox Process

Cox process is a natural choice for an environmentally-driven point
process (Cox 1955, Diggle et al. 2013).

Definition
Cox process Y(x) is defined by two postulates:

1. Λ(x) is a nonnegative-valued stochastic process;

2. conditional on the realisation λ(x) of the process Λ(x), the point
process Y(x) is an inhomogeneous Poisson process with intensity
λ(x).
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Log-Gaussian Cox Process

I Cox process with intensity driven by a fixed component X(x)>β
and a latent function f(x):

Λ(x) = exp
(
X(x)>β + f(x)

)
,

where f(x) ∼ GP(0, kθ(·, ·)), X(x) are socio-economic covariates,
and β are their coefficients.

I Discretised version of the model:

yi ∼ Poisson
(
exp

[
X(xi)

>β + f(xi)
])
.
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LGCP limitations

I Fitting this doubly-stochastic model at scale is challening.
I Simplifying assumptions such as stationarity of f may not be

appropriate (see Figure 3)
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Figure: Standard deviation of the GP
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Common approaches to address spatial heterogeneity

I Mixture models with allocation that enforces spatial dependence
(Green & Richardson 2002, Fernández & Green 2002, Hildeman
et al. 2018).

I Regression coefficients modelled as a Gaussian process (Gelfand
et al. 2003, Banerjee et al. 2015).

Both of these approaches have limited scalability.
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Our proposed model

yn|zn = k,β,Xn ∼ Poisson
(
exp

(
X>
nβk

))
zn|π ∼ Categorical(πb[n])

πb|α ∼ Dirichlet(α, . . . , α)

βk,j |σ2
k,j ∼ N (0, σ2

k,j)

σ2
k,j ∼ InvGamma(1, 0.01)

α = 1/K.

Burglary in London: Insights from Statistical Heterogeneous Spatial
Point Processes

Jan Povala
Department of Mathematics, Imperial College London; The Alan Turing Institute

E-mail: jan.povala11@imperial.ac.uk
Seppo Virtanen, Mark Girolami
Department of Engineering, University of Cambridge; The Alan Turing Institute

yn

Xnzn

πb

βkj

σkj

α

N

J

K

B

Modelling 12



Inference

We use Metropolis-within-Gibbs (Geman & Geman 1984, Metropolis
et al. 1953) scheme using the following two steps:

1. We sample the regression coefficients βk,j jointly for all
k = 1, . . . ,K and j = 1, . . . , J . The unnormalised density of the
conditional distribution is given as

p(β|α,X,y, z) ∝ p(y|β,X, z)p(β). (1)

Equation 1 is sampled using Hamiltonian Monte Carlo method
(Duane et al. 1987).

2. Mixture allocation can be sampled cell by cell directly

p(zn = k|zn̄, α,Xnβ,y) ∝ p(yn|zn = k,Xnβk)
cn̄b[n]k + α

Kα+
∑K
i=1 c

n̄
b[n]k

,

(2)
where cn̄b[n]k is the number of cells other than cell n in the

encompassing block b[n] assigned to component k, and zn̄ is the
allocation vector with the contribution of cell n removed.
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London burglary experiment

I One-year point pattern aggregated to a grid with cell size
400m× 400m.

I Covariates X(x) chosen based on criminological background.

I Number of mixture components, K, ranges from 1 to 8.

I The blocking structure given by census output areas (MSOA).
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Evaluation

We evaluate the performance using these metrics:
I Watanabe-Akaike informaction criterion (Gelman et al. 2013)

WAIC = −2

N∑
n=1

log

(
1

S

S∑
s=1

p(yn|θ(s))

)
+2

N∑
n=1

V Ss=1

(
log p

(
yn|θ(s)

))
,

(3)
I Energy score (Gneiting & Raftery 2007)

Energy score =
1

S

S∑
s=1

‖y(s)− ỹ‖γ2 −
1

2S2

S∑
i=1

S∑
j=1

‖y(i)−y(j)‖γ2 , (4)

I Predictive accuracy index (PAI): proportion of crimes occurring in
marked hotspots divided by the proportion of the study region
marked as hotspots (Chainey et al. 2008).

I Predictive efficiency index (PEI): number of crimes predicted by the
model for a given area size divided by the maximum number of
crimes for the given area size (Hunt 2016).
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Results
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Figure: Evaluation of the performance of the proposed model ( ), compared
to LGCP ( ). Results are shown for different model specifications:
specification 1 ( ), specification 2 ( ), specification 3 ( ), specification
4 ( ). Training data: burglary 2015, test data: burglary 2016.
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Hotspot performance metrics
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Figure: PAI/PEI performance for the proposed ( ) and LGCP ( ) models,
using specification 4. For the SAM-GLM results, the colour of the line
represents the number of components: K = 1( ), K = 2( ),
K = 3( ), K = 4( ), K = 5( ), K = 6( ), K = 7 ( ). Training
data: burglary 2015, test data: burglary 2016.
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Interpretation of results

To effectively compare the effects of a covariate across different mixture
components, we consider a covariate importance measure, defined as

IMPkj = 1−
∑
n I (zn = k)(yn − ŷnβ̃)2∑
n I (zn = k)(yn − ŷnβ̄j )2

, (5)
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Allocations 1

CovEffect, component 1
log households 0.914 (0.003) -
intercept 0.887 (0.004) +
log POIs (all) 0.275 (0.053) -
occupation variation 0.152 (0.057) +
accessibility 0.062 (0.047) +
residential turnover 0.005 (0.040) +
log house price 0.005 (0.043) +
(Semi-)detached houses 0.002 (0.041) +
ethnic heterogeneity -0.007 (0.042) -

Richmond and Bushy parks (A), Osterley Park and Kew botanic gardens
(B), Heathrow airport (C), RAF Northolt base and nearby parks (D),
parks near Harrow (E), green fields next to Edgware (F), Hyde Park,
Regent’s park, Hampstead Heath (G), Lee Valley (H), London City
airport and the industrial zone in Barking (I), Rainham Marshes reserve
(J), parks around Bromley (K)
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Allocations 2

CovEffect, component 2
intercept 0.932 (0.002) +
log households 0.881 (0.004) +
log POIs (all) 0.221 (0.035) +
accessibility 0.144 (0.045) +
ethnic heterogeneity 0.086 (0.035) +
occupation variation 0.014 (0.039) -
log house price 0.011 (0.036) +
(Semi-)detached houses 0.006 (0.035) -
residential turnover 0.001 (0.034) -

Clapham, Balham, and Forrest Hill (L); Richmond (M); Southall (N);
Ealing, Wembley, and Harrow (O); Chelsea and Kensington (P); Brent
and Hampstead (Q); Edgware (R); East Barnet (S), Enfield (T);
Haringey and Walthamstow (U); Stratford (V); Romford (W); Orpington
(X); Purley (Y); and Twickenham (Z)
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Allocations 3

CovEffect, component 3
intercept 0.924 (0.003) +
log POIs (all) 0.720 (0.017) +
log households 0.530 (0.025) +
accessibility 0.508 (0.033) +
ethnic heterogeneity 0.229 (0.051) +
occupation variation 0.169 (0.057) +
residential turnover 0.148 (0.040) -
log house price 0.089 (0.046) -
(Semi-)detached houses 0.013 (0.040) +

Soho, Mayfair, Covent Garden, Marylebone, Fitzrovia, London Bridge,
Shoreditch (1); Notting Hill and Holland Park (2); Earl’s Court and
Fulham (3); Hackney (4); Brent Cross (5); Wembley (6);
Twickenham(7); Sutton (8); Croydon (9)
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Remarks

I The proposed approach allows for fast sampling and achieves
performance comparable to LGCP. One posterior sample from the
proposed model is of O(N ×K) time complexity, compared to
LGCP’s O

(
N3
)
.

I The model gives insights as to which covariate is important for each
component.

I The allocation posterior is mostly determined by how well the β
coefficients explain the log intensity at a given location. The mixture
allocation prior does not play a strong role.

I Label-switching, which hampers interpretation, is not present for
K ≤ 5. It is harder to switch modes in higher dimensions.
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Conclusions and further work

Conclusions:

I Using stationary GPs is not enough to effectively model point
patterns in large urban domains.

I The blocking approach can significantly reduce computation time.

I More details can be found in the submitted arXiv paper:
https://arxiv.org/pdf/1910.05212.pdf

Further work:

I Spatial dependence between the blocks.

I Non-blocking models such as Gibbs distribution for mixture
allocation.
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