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Aims and Objectives

I Modelling of crime and short-term forecasting.
I Two stages:

1. Inference - what is the underlying process that generated the
observations?

2. Prediction - use the inferred process’s properties to forecast future
values.
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Burglary
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Theft from the person
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Cox Process

Cox process is a natural choice for an environmentally driven point
process (Diggle et al., 2013).

Definition
Cox process Y(x) is defined by two postulates:
1. Λ(x) is a nonnegative-valued stochastic process;
2. conditional on the realisation λ(x) of the process Λ(x), the point

process Y(x) is an inhomogeneous Poisson process with intensity
λ(x).
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Log-Gaussian Cox Process

I Cox process with intensity driven by a fixed component Z>x β and a
latent function f(x):

Λ(x) = exp
(
Z>x β + f(x)

)
,

where f(x) ∼ GP(0, kθ(·, ·)), Zx are socio-economic indicators, and
β are their coefficients.

I Discretised version of the model:

yi ∼ Poisson
(
exp

[
Z>xiβ + f(xi)

])
.
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Inference

We would like to infer the posterior distributions of β, θ, and f :

p(f ,β,θ|y) =
p(y|f ,β)p(f |θ)p(θ)p(β)

p(y)
,

where
p(y) =

∫
p(y|f ,β)p(f |θ)p(β)p(θ)dθdβdf ,

which is intractable.

Solutions
1. Laplace approximation
2. Markov Chain Monte Carlo sampling
3. . . .
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Markov Chain Monte Carlo (MCMC)

I Sampling from the joint posterior distribution:

p(f ,β,θ|y) ∝ p(y|f ,β)p(f |θ)p(θ)p(β),

using Hamiltonian Monte Carlo (HMC).
I Challenges:

– θ, f , and β are strongly correlated.
– High dimensionality of f - every iteration requires the inverse and the

determinant of K.
– Choosing the mass matrix in the HMC algorithm.
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Computation
Flaxman et al. (2015), Saatçi (2012)

I The calculations above require O
(
n3
)
operations and O

(
n2
)
space.

I Cheaper linear algebra available if separable kernel functions are
assumed, e.g. in D = 2 dimensions:

k((x1, x2), (x′1, x
′
2)) = k1(x1, x

′
1)k2(x2, x

′
2)

implies that K = K1 ⊗K2.

I Applying the above properties, the inference can be performed using
O
(
Dn

D+1
D

)
operations and O

(
Dn

2
D

)
space.
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Experiment

Model
I Factorisable covariance function (product of two Matérns).
I Uninformative prior for θ.
I N (0, 10I) prior for β.

Dataset
I Burglary, Theft from the person data for 2016.
I Grid: 59x46, one cell is an area of 1km by 1km.
I Missing locations are treated with a special noise model.

Inferred random variables
I Coefficients (β) for various socio-economic indicators.
I Two hyperparameters θ: lengthscale(`), marginal variance (σ2).
I Latent field f .
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Socio-economic indicators
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Hyperparameters
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Latent field - Burglary
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Latent field - Theft from the person
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Model Fit - RMSE

We compare our model with inferences made using Poisson regression
(GLM) using the root mean square error metric:

Burglary

MCMC 6.59224
GLM 30.39759

Theft from the person

MCMC 4.71420
GLM 69.61551
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Discussion

I Effects missing in the GLM model are spatially correlated. This
could imply two possibilities:

– Model is missing a covariate that is spatially correlated.
– The true process driving criminal activity is spatially correlated.

I Socio-economic indicators from the census data are ’static’ and
might struggle to explain more ’dynamic’ crime types, e.g. burglary
vs. violence against person.
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Next steps

I Benchmark against INLA (Lindgren, Rue, and Lindström, 2011).
I Looking at a possibility to extend it into spatio-temporal case.
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θ traceplots
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f traceplots
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Laplace Approximation
Flaxman et al. (2015)

I For simplicity, we assume non-parametric model (no fixed term), and
treat θ as a point estimate got by maximising marginal likelihood.

I Approximate the posterior distribution of the latent surface by:

p(f |y,θ) ≈ N
(
f̂ ,−

(
∇∇Ψ(f)|f̂

)−1)
,

where Ψ(f) := log p(f |y,θ)
const
= log p(y|f ,θ) + log p(f |θ) is

unnormalised log posterior, and f̂ is the mode of the distribution.
I Newton’s method to find f̂ .
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Matérn Covariance Function

k(r) =
21−ν

Γ(ν)

(√
2νr

`

)ν
Kν

(√
2νr

`

)

We fix ν = 2.5 as it is difficult to jointly estimate ` and ν due to
identifiability issues.
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Kronecker Algebra
Saatçi (2012)

I Matrix-vector multiplication (⊗dAd) b in O(n) time and space.
I Matrix inverse: (A⊗B)−1 = A−1 ⊗B−1

I Let Kd = QdΛdQ
>
d be the eigendecomposition of Kd. Then, the

eigendecomposition of K = ⊗dKd is given by QΛQ>, where
Q = ⊗dQd, and Λ = ⊗dΛd. The number of steps required is
O
(
Dn

3
D

)
.
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Incomplete grids
Wilson et al. (2014)

We have that yi ∼ Poisson(exp(fi)). For the points of the grid that are
not in the domain, we let yi ∼ N (fi, ε−1) and ε→ 0. Hence,

p(y|f) =
∏
i∈D

(
efi
)yi e−efi
yi!

∏
i/∈D

1√
2πε−1

e
−ε(yi−fi)

2

2

The log-likelihood is thus:∑
i∈D

[yifi − exp(fi) + const]− 1

2

∑
i/∈D

ε(yi − fi)2

We now take the gradient of the log-likelihood as

∇ log p(y|f)i =

{
yi − exp(fi), if i ∈ D
ε(yi − fi), if i /∈ D

and the hessian of the log-likelihood as

∇∇ log p(y|f)ii =

{
− exp(fi), if i ∈ D
−ε if i /∈ D

.
Extra slides 30


	Motivation
	Methodology
	Results
	Current work, Next steps

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	anm1: 


