Log-Gaussian Cox Process for London crime data

Jan Povala

with Louis Ellam Dr Seppo Virtanen Prof Mark Girolami

July 24, 2018

Outline

Motivation

Methodology

Results

Current work, Next steps

Motivation

Aims and Objectives

- Modelling of crime and short-term forecasting.
- Two stages:
 - 1. *Inference* what is the underlying process that generated the observations?
 - 2. *Prediction* use the inferred process's properties to forecast future values.

Burglary

Motivation

Theft from the person

Motivation

Outline

Motivation

Methodology

Results

Current work, Next steps

Methodology

Cox Process

Cox process is a natural choice for an environmentally driven point process (Diggle et al., 2013).

Definition

Cox process $\mathsf{Y}(\boldsymbol{x})$ is defined by two postulates:

- 1. $\Lambda(x)$ is a nonnegative-valued stochastic process;
- 2. conditional on the realisation $\lambda(x)$ of the process $\Lambda(x)$, the point process Y(x) is an inhomogeneous Poisson process with intensity $\lambda(x)$.

Log-Gaussian Cox Process

• Cox process with intensity driven by a fixed component $Z_x^{\top}\beta$ and a latent function f(x):

$$\Lambda(\boldsymbol{x}) = \exp\left(Z_{\boldsymbol{x}}^{\top}\boldsymbol{\beta} + f(\boldsymbol{x})\right),\,$$

where $f(\boldsymbol{x}) \sim \mathcal{GP}(0, k_{\theta}(\cdot, \cdot))$, $Z_{\boldsymbol{x}}$ are socio-economic indicators, and $\boldsymbol{\beta}$ are their coefficients.

Discretised version of the model:

$$\mathbf{y}_i \sim \text{Poisson}\left(\exp\left[Z_{\boldsymbol{x}_i}^\top \boldsymbol{\beta} + f(\boldsymbol{x}_i)\right]\right).$$

Methodology

Inference

We would like to infer the posterior distributions of β , θ , and f:

$$p(\mathbf{f}, \boldsymbol{\beta}, \boldsymbol{\theta} | \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{f}, \boldsymbol{\beta}) p(\mathbf{f} | \boldsymbol{\theta}) p(\boldsymbol{\theta}) p(\boldsymbol{\beta})}{p(\mathbf{y})},$$

where

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f}, \boldsymbol{\beta}) p(\mathbf{f}|\boldsymbol{\theta}) p(\boldsymbol{\beta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta} d\boldsymbol{\beta} d\mathbf{f}$$

which is intractable.

Solutions

- 1. Laplace approximation
- 2. Markov Chain Monte Carlo sampling

3. ...

Markov Chain Monte Carlo (MCMC)

Sampling from the joint posterior distribution:

 $p(\mathbf{f}, \boldsymbol{\beta}, \boldsymbol{\theta} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{f}, \boldsymbol{\beta}) p(\mathbf{f} | \boldsymbol{\theta}) p(\boldsymbol{\theta}) p(\boldsymbol{\beta}),$

using Hamiltonian Monte Carlo (HMC).

- Challenges:
 - heta, f, and eta are strongly correlated.
 - High dimensionality of ${\bf f}$ every iteration requires the inverse and the determinant of ${\boldsymbol K}.$
 - Choosing the mass matrix in the HMC algorithm.

Computation

Flaxman et al. (2015), Saatçi (2012)

- \blacktriangleright The calculations above require $\mathcal{O}\!\left(n^3\right)$ operations and $\mathcal{O}\!\left(n^2\right)$ space.
- ► Cheaper linear algebra available if separable kernel functions are assumed, e.g. in D = 2 dimensions:

$$k((x_1, x_2), (x'_1, x'_2)) = k_1(x_1, x'_1)k_2(x_2, x'_2)$$

implies that $K = K_1 \otimes K_2$.

• Applying the above properties, the inference can be performed using $\mathcal{O}\left(Dn^{\frac{D+1}{D}}\right)$ operations and $\mathcal{O}\left(Dn^{\frac{2}{D}}\right)$ space.

Methodology

Outline

Motivation

Methodology

Results

Current work, Next steps

Results

Experiment

Model

- ► Factorisable covariance function (product of two Matérns).
- Uninformative prior for θ .
- $\mathcal{N}(\mathbf{0}, 10\mathbf{I})$ prior for $\boldsymbol{\beta}$.

Dataset

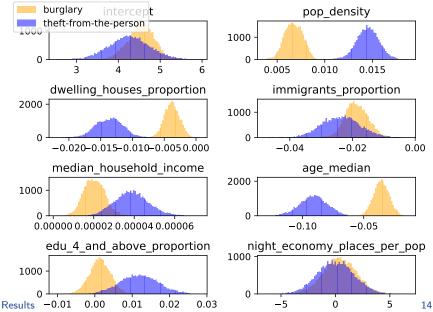
- Burglary, Theft from the person data for 2016.
- Grid: 59x46, one cell is an area of 1km by 1km.
- Missing locations are treated with a special noise model.

Inferred random variables

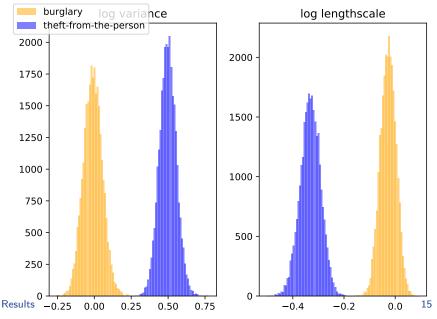
- Coefficients (β) for various socio-economic indicators.
- Two hyperparameters θ : lengthscale(ℓ), marginal variance (σ^2).
- Latent field f.

Results

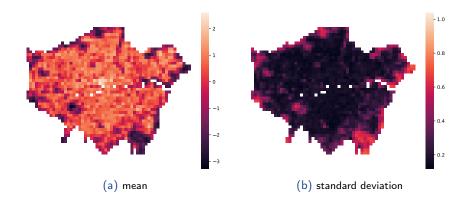
Socio-economic indicators



Hyperparameters

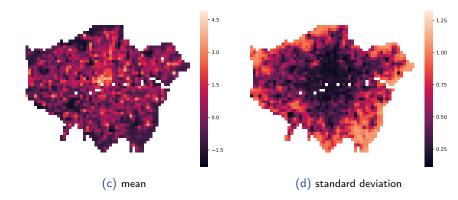


Latent field - Burglary



Results

Latent field - Theft from the person



Model Fit - RMSE

We compare our model with inferences made using Poisson regression (GLM) using the root mean square error metric:

Burglary

MCMC	6.59224
GLM	30.39759

Theft from the person

MCMC	4.71420
GLM	69.61551

Discussion

- Effects missing in the GLM model are spatially correlated. This could imply two possibilities:
 - Model is missing a covariate that is spatially correlated.
 - The true process driving criminal activity is spatially correlated.
- Socio-economic indicators from the census data are 'static' and might struggle to explain more 'dynamic' crime types, e.g. burglary vs. violence against person.

Outline

Motivation

Methodology

Results

Current work, Next steps

Current work, Next steps

Next steps

- Benchmark against INLA (Lindgren, Rue, and Lindström, 2011).
- ► Looking at a possibility to extend it into spatio-temporal case.

Bibliography I

 Diggle, Peter J. et al. (2013). "Spatial and Spatio-Temporal Log-Gaussian Cox Processes: Extending the Geostatistical Paradigm". en. In: Statistical Science 28.4, pp. 542–563. ISSN: 0883-4237. DOI: 10.1214/13-STS441. URL: http://projecteuclid.org/euclid.ss/1386078878.
Flaxman, Seth et al. (2015). "Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods". In: Proceedings of the 32nd International Conference on International Conference on Machine Learning. Vol. 37. ICML'15. Lille, France: JMLR.org, pp. 607–616.

Bibliography II

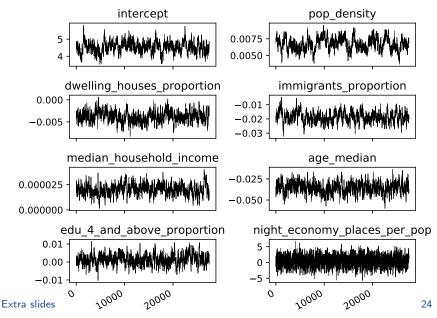
Lindgren, Finn, Håvard Rue, and Johan Lindström (2011). "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach". en. In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 73.4, pp. 423–498. ISSN: 1467-9868. DOI: 10.1111/j.1467-9868.2011.00777.x. URL:

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2011.00777.x/abstract.

Saatçi, Yunus (2012). "Scalable inference for structured Gaussian process models". PhD Thesis. Citeseer.

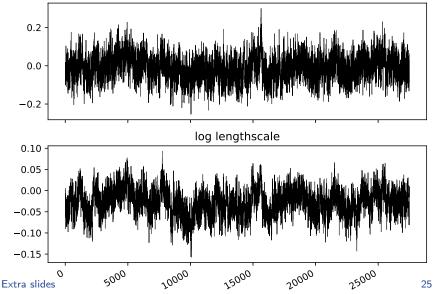
Wilson, Andrew Gordon et al. (2014). "Fast Kernel Learning for Multidimensional Pattern Extrapolation". In: Proceedings of the 27th International Conference on Neural Information Processing Systems -Volume 2. NIPS'14. Cambridge, MA, USA: MIT Press, pp. 3626–3634. URL: http://dl.acm.org/citation.cfm?id=2969033.2969231.

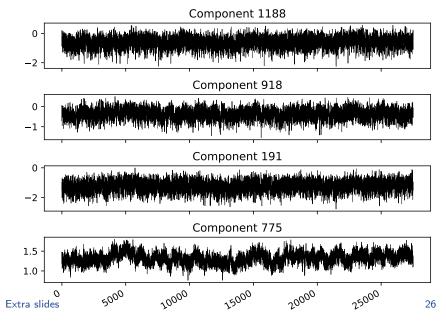
β traceplots



θ traceplots

log variance





f traceplots

Laplace Approximation

Flaxman et al. (2015)

- For simplicity, we assume non-parametric model (no fixed term), and treat θ as a point estimate got by maximising marginal likelihood.
- Approximate the posterior distribution of the latent surface by:

$$p(\mathbf{f}|\mathbf{y}, \boldsymbol{\theta}) \approx \mathcal{N}\left(\hat{\mathbf{f}}, -\left(\nabla \nabla \Psi(\mathbf{f})|_{\hat{\mathbf{f}}}\right)^{-1}\right),$$

where $\Psi(\mathbf{f}) := \log p(\mathbf{f}|\mathbf{y}, \boldsymbol{\theta}) \stackrel{\text{const}}{=} \log p(\mathbf{y}|\mathbf{f}, \boldsymbol{\theta}) + \log p(\mathbf{f}|\boldsymbol{\theta})$ is unnormalised log posterior, and $\hat{\mathbf{f}}$ is the mode of the distribution.

• Newton's method to find $\hat{\mathbf{f}}$.

Extra slides

Matérn Covariance Function

$$k(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}r}{\ell}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}r}{\ell}\right)$$

We fix $\nu=2.5$ as it is difficult to jointly estimate ℓ and ν due to identifiability issues.

Extra slides

Kronecker Algebra

Saatçi (2012)

- Matrix-vector multiplication $(\otimes_d \mathbf{A}_d) \mathbf{b}$ in $\mathcal{O}(n)$ time and space.
- Matrix inverse: $(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$
- ► Let $K_d = Q_d \Lambda_d Q_d^{\top}$ be the eigendecomposition of K_d . Then, the eigendecomposition of $K = \bigotimes_d K_d$ is given by $Q \Lambda Q^{\top}$, where $Q = \bigotimes_d Q_d$, and $\Lambda = \bigotimes_d \Lambda_d$. The number of steps required is $\mathcal{O}\left(Dn^{\frac{3}{D}}\right)$.

Incomplete grids

Wilson et al. (2014)

We have that $y_i \sim \text{Poisson}(\exp(f_i))$. For the points of the grid that are not in the domain, we let $y_i \sim \mathcal{N}(f_i, \epsilon^{-1})$ and $\epsilon \to 0$. Hence,

$$p(\mathbf{y}|\mathbf{f}) = \prod_{i \in \mathcal{D}} \frac{\left(e^{\mathbf{f}_i}\right)^{\mathbf{y}_i} e^{-e^{\mathbf{f}_i}}}{\mathbf{y}_i!} \prod_{i \notin \mathcal{D}} \frac{1}{\sqrt{2\pi\epsilon^{-1}}} e^{\frac{-\epsilon(\mathbf{y}_i - \mathbf{f}_i)^2}{2}}$$

The log-likelihood is thus:

$$\sum_{i \in \mathcal{D}} \left[\mathsf{y}_i \mathsf{f}_i - \exp(f_i) + \mathsf{const} \right] - \frac{1}{2} \sum_{i \notin \mathcal{D}} \epsilon (\mathsf{y}_i - \mathsf{f}_i)^2$$

We now take the gradient of the log-likelihood as

$$\nabla \log p(\mathbf{y}|\mathbf{f})_i = \begin{cases} \mathsf{y}_i - \exp(\mathsf{f}_i), & \text{if } i \in \mathcal{D} \\ \epsilon(\mathsf{y}_i - \mathsf{f}_i), & \text{if } i \notin \mathcal{D} \end{cases}$$

and the hessian of the log-likelihood as

$$\nabla \nabla \log p(\mathbf{y}|\mathbf{f})_{ii} = \begin{cases} -\exp(\mathbf{f}_i), & \text{if } i \in \mathcal{D} \\ -\epsilon & \text{if } i \notin \mathcal{D} \end{cases}$$

Extra slides

.