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Aims and Objectives

I Modelling of crime and short-term forecasting.
I Two stages involved:

1. inference - what is the underlying process that generated the
observations?

2. prediction - use the inferred process’s properties to forecast future
values.
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Burglary
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Theft from the person
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Cox Process

Cox process is a natural choice for an environmentally driven point
process (Diggle et al., 2013).

Definition
Cox process Y(x) is defined by two postulates:
1. Λ(x) is a nonnegative-valued stochastic process;
2. conditional on the realisation λ(x) of the process Λ(x), the point

process Y(x) is an inhomogeneous Poisson process with intensity
λ(x).
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Log-Gaussian Cox Process

I Cox process with intensity driven by a Gaussian Process f(x):

Λ(x) = exp (f(x)).

I The latent surface f is modelled by placing a GP prior:

f(x) ∼ GP(0, kθ(·, ·)).

I Discretised version of the model over a regular grid on the
observation window is:

yi|f(xi) ∼ Poisson(exp [f(xi)]).
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Field inference

Given the observations y on the grid X, our goal is to find the
distribution of the latent field f :

p(f |y, X,θ) =
p(y|f , X,θ)p(f |X,θ)

p(y|X,θ)
,

where
p(y|X,θ) =

∫
p(y|f , X,θ)p(f |X,θ)df

which is intractable.
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Laplace Approximation
Flaxman et al. (2015)

I One approach to overcome intractability is Laplace approximation.
I Approximate the posterior distribution of the latent surface by:

p(f |y, X,θ) ≈ N
(
f̂ ,−

(
∇∇Ψ(f)|f̂

)−1)
,

where Ψ(f) := log p(f |y, X,θ)
const
= log p(y|f , X,θ) + log p(f |X,θ)

is unnormalised log posterior, and f̂ is the mode of the distribution.
I Newton’s method to find f̂ .
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Hyperparameters - Marginal Likelihood
Flaxman et al. (2015)

I Accurate inferences/predictions require knowing θ.
I Marginal log-likelihood:

log p(y|X,θ) = log

∫
exp [Ψ(f)] df

≈ log p(y|f̂)− 1

2
f̂>K−1f̂ − 1

2
log |I +KW | ,

where Kij = kθ(xi,xj) describes covariance between pairwise
locations, and W := −∇∇ log p(y|f̂ , X,θ).
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Computation I
Flaxman et al. (2015)

I The calculations above require O
(
n3
)
operations and O

(
n2
)
space.

I Cheaper linear algebra available if separable kernel functions are
assumed, e.g. in D = 2 dimensions:

k((x1, x2), (x′1, x
′
2)) = k1(x1, x

′
1)k2(x2, x

′
2)

implies that K = K1 ⊗K2.
I Determinant approximation due to Fiedler (1971):

log |I +KW | = log
(
|K +W−1||W |

)
≤ log

{∏
i

(
ei +W−1ii

)∏
i

Wii

}
=
∑
i

log (1 + eiWii) ,

where e1, . . . , en are sorted eigenvalues of K.
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Computation II
Flaxman et al. (2015)

Applying the above properties, the inference and predictions can be
computed using O

(
Dn

D+1
D

)
operations and O

(
Dn

2
D

)
space thanks to:

I Conjugate gradient for solving K−1b = x, where matrix-vector
multiplication is efficient due to Kronecker structure.

I Eigendecomposition utilising Kronecker structure.
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Experiment

Spatial model with isotropic Matérn covariance function:
I Dataset used: 2016 data
I Crime types: Burglary, Theft from the person
I Grid: 117x91, one cell is an area of 500m by 500m.
I Missing locations were treated as imaginary with a special noise

model.
I Two hyperparameters inferred: lengthscale(`), marginal variance

(σ2)
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Burglary - inferred hyperparameters

Inferred hyperparameters: ` = 1.41, and σ2 = 4.16
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Burglary - counts
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Burglary - latent field
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Theft from the person - inferred hyperparameters

Inferred hyperparameters: ` = 1.16, and σ2 = 3.84
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Theft from the person - counts
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Theft from the person - latent field
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Comments

I The inference confirmed that number of occurrences in a cell
influences neighbouring locations.

I The process driving Burglary is ‘smoother’ than the process driving
Theft from the person.
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Forecasting

The domain will now be X1 ×X2 × T and the kernel will be of the form

k((x1, x2, t), (x
′
1, y
′
2, t
′)) = k1(x1, x

′
1)k2(x2, x

′
2)kt(|t− t′|)

with k1(·, ·), k2(·, ·) as before and kt(·) as one of the below:
I A kernel with period of 12 months for seasonal variation (Flaxman,

2014):

kt(τ) = exp

(
−

2 sin2
(
τπ
12

)
`2

)
I Spectral mixture kernel with Q components (Flaxman et al., 2015):

kt(τ) =

Q∑
q=1

wq exp
(
−2π2τ2vq

)
cos (2πτµq)
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Stochastic PDEs

Another computationally tractable, and more mechanistic, approach is
describing the crime activity using stochastic PDEs:

I Finite Element Method to solve SPDEs as described in Lindgren,
Rue, and Lindström (2011).

I Sigrist, Künsch, and Stahel (2015) solve transport-diffusion SPDE
using spectral methods on a grid.
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Matérn Covariance Function

k(r) =
21−ν

Γ(ν)

(√
2νr

`

)ν
Kν

(√
2νr

`

)

We fix ν = 2.5 as it is difficult to jointly estimate ` and ν due to
identifiability issues.
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Kronecker Algebra
Saatçi (2012)

I Matrix-vector multiplication (⊗dAd) b in O(n) time and space.
I Matrix inverse: (A⊗B)−1 = A−1 ⊗B−1

I Let Kd = QdΛdQ
>
d be the eigendecomposition of Kd. Then, the

eigendecomposition of K = ⊗dKd is given by QΛQ>, where
Q = ⊗dQd, and Λ = ⊗dΛd. The number of steps required is
O
(
Dn

3
D

)
.
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Field inference - Newton Optimisation
Flaxman et al. (2015)

I The Newton optimisation step:

fnew ← fold − (∇∇Ψ)
−1∇Ψ.

I ∇∇Ψ and ∇Ψ require inverting the covariance matrix of the GP:

∇Ψ(f) =∇ log p(y|f , X,θ)−K−1f
∇∇Ψ(f) =−W −K−1,

where W := −∇∇ log p(y|f , X,θ).
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Incomplete grids
Wilson et al. (2014)

We have that yi ∼ Poisson(exp(fi)). For the points of the grid that are
not in the domain, we let yi ∼ N (fi, ε−1) and ε→ 0. Hence,

p(y|f) =
∏
i∈D

(
efi
)yi e−efi
yi!

∏
i/∈D

1√
2πε−1

e
−ε(yi−fi)

2

2

The log-likelihood is thus:∑
i∈D

[yifi − exp(fi) + const]− 1

2

∑
i/∈D

ε(yi − fi)2

We now take the gradient of the log-likelihood as

∇ log p(y|f)i =

{
yi − exp(fi), if i ∈ D
ε(yi − fi), if i /∈ D

and the hessian of the log-likelihood as

∇∇ log p(y|f)ii =

{
− exp(fi), if i ∈ D
−ε if i /∈ D

.
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Fiedler’s bound

For Hermitian positive semidefinite matrices U and V :∏
i

(ui + vi) ≤ |U + V | ≤
∏
i

(ui + vn−i+1) ,

where ui and vj are sorted eigenvalues of U and V , respectively.
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